1
|
Zou XJ, Jin ZX, Yang HY, Wu F, Ren ZH, Guan ZH. Palladium-Catalyzed Inward Isomerization Hydroaminocarbonylation of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202406226. [PMID: 38618886 DOI: 10.1002/anie.202406226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/16/2024]
Abstract
In contrast to the kinetically favored outward isomerization-hydrocarbonylation of alkenes, the disfavored inward isomerization-hydrocarbonylation of alkenes remains an important challenge. Herein, we have developed a novel and effective palladium-catalyzed inward isomerization-hydroaminocarbonylation of unactivated alkenes and aniline hydrochlorides for the formation of synthetically valuable α-aryl carboxylic amides in high yields and high site-selectivities. The high efficiency of the reaction is attributed to a relay catalysis strategy, in which the Markovnikov-favored [PdH]-PtBu3 catalyst is responsible for inward isomerization, while the [PdH]-Ruphos catalyst is responsible for hydroaminocarbonylation of the resulting conjugated aryl alkenes. The reaction exhibits highly functional group tolerance and provides a new method for formal carbonylation of remote C(sp3)-H bond.
Collapse
Affiliation(s)
- Xian-Jin Zou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zhao-Xing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Hui-Yi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Fei Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
2
|
Liu L, Liu Y, Wu Q, Zhao X, Li Y, Chen G, Bi S. Mechanistic Investigation into the Regio-Controllable Hydroallylations of Alkynes with Allylborons under Pd-Based Synergetic Catalyses. J Org Chem 2023; 88:4536-4545. [PMID: 36930045 DOI: 10.1021/acs.joc.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Density functional theory calculations were employed to investigate the Pd-catalyzed regio-selective hydroallylations of alkynes with allylborons: cooperation of Cu(OAc)2 and dppe resulting in 1,4-dienes while combination of AdCO2H and PCy3 leading to 1,5-dienes. A unified rationalization mechanism called "Lewis-acid-base-interaction promoted deprotonation/3,3-rearrangement" was proposed. Compared with the commonly reported metathesis pathway to only afford the metal-allyl intermediate, in the newly established mechanism, an additional Brønsted acid (as an initiator of the Pd0 oxidative addition) is generated by the interaction of the allylboron (Lewis acid) B atom with the nBuOH (Lewis base) O atom, and subsequent 3,3-rearrangement ensures the thermodynamic feasibility of the reaction. In addition, it was found that excess Cu(OAc)2 plays two potential roles in the oxidative addition/alkyne insertion: (i) the participation of one AcO- of Cu(OAc)2 ensures a large orbital overlap between the migrating H and Pd atoms, facilitating the formal AcO-H cleavage and (ii) the extra (OAc)2Cu···O(carboxyl) σ-coordination indirectly contributes to the (Me)C≡C(Ph) insertion into the Pd-H bond. Further analysis showed that the origin of the regioselectivity is closely related to the employed phosphorus ligand. These revealed results, which have been overlooked in the previous documents, would aid the development of new related catalytic reactions.
Collapse
Affiliation(s)
- Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Wu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research and Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Key Laboratory of Tibetan Medicine Research and Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
3
|
Jiang YY, Fan X, Li Y, Ji GC, Liu P, Bi S. Computational Study Revealing the Mechanistic Origin of Distinct Performances of P(O)-H/OH Compounds in Palladium-Catalyzed Hydrophosphorylation of Terminal Alkynes: Switchable Mechanisms and Potential Side Reactions. J Org Chem 2022; 87:14673-14684. [PMID: 36226799 DOI: 10.1021/acs.joc.2c02002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pd-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds provided atom-economical and oxidant-free access to alkenylphosphoryl compounds. Nevertheless, the applicable P(O)-H substrates were limited to those without a hydroxyl group except H2P(O)OH. It is also puzzling that Ph2P(O)OH could co-catalyze the reaction to improve Markovnikov selectivity. Herein, a computational study was conducted to elucidate the mechanistic origin of the phenomena described above. It was found that switchable mechanisms influenced by the acidity of substrates and co-catalysts operate in hydrophosphorylation. In addition, potential side reactions caused by the protonation of PdII-alkenyl intermediates with P(O)-OH species were revealed. The regeneration of an active Pd(0) catalyst from the resulting Pd(II) complexes is remarkably slower than the hydrophosphonylation, while the downstream reactions, if possible, would lead to phosphorus 2-pyrone. Further analysis indicated that the side reactions could be suppressed by utilizing bulky substrates or ligands or by decreasing the concentration of P(O)-OH species. The presented switchable mechanisms and side reactions shed light on the co-transformations of P(O)-H and P-OH compounds in the Pd-catalyzed hydrophosphorylation of alkynes, clarify the origin of the distinct performances of P(O)-H/OH compounds, and provide theoretical clues for expanding the applicable substrate scope of hydrophosphorylation and synthesizing cyclic alkenylphosphoryl compounds.
Collapse
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Guo-Cui Ji
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
4
|
Li K, Shen N, Liu C, Shang R. Palladium-catalyzed Regiodivergent Decarboxylative Hydrothiocarbonylation of Vinylarenes using Oxalic Acid Monothioesters. Synlett 2022. [DOI: 10.1055/a-1807-8282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxalic acid monothioester (OAM), an easily accessible and bench-stable reagent, is reported herein as a synthetic equivalent of thioester for palladium-catalyzed decarboxylative hydrothiocarbonylation of vinylarenes to achieve both branched and linear regioselectivity. The reactions provided user-friendly synthetic methods for preparation of alfa- or beta-arylated propionic acid thioesters from vinylarenes without directly handling toxic carbon monoxide and odorous thiols.
Collapse
Affiliation(s)
- Kang Li
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Ni Shen
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Can Liu
- Chemistry, University of Science and Technology of China, Hefei, China
| | - Rui Shang
- Chemistry, University of Science and Technology of China, Hefei, China
- chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|