1
|
Rajput D, Jan G, Karuppasamy M, Bhuvanesh N, Nagarajan S, Maheswari CU, Menéndez JC, Sridharan V. Rapid Assembly of Functionalized 2 H-Chromenes and 1,2-Dihydroquinolines via Microwave-Assisted Secondary Amine-Catalyzed Cascade Annulation of 2- O/ N-Propargylarylaldehydes with 2,6-Dialkylphenols. J Org Chem 2023; 88:11778-11792. [PMID: 37556760 DOI: 10.1021/acs.joc.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An efficient, secondary amine-catalyzed cascade annulation of 2-O/N-propargylarylaldehydes with 2,6-dialkylphenols was established to access biologically relevant functionalized 2H-chromenes and 1,2-dihydroquinolines tethered with a synthetically useful p-quinone methide scaffold in high yields under microwave irradiation and conventional heating conditions. The microwave-assisted strategy was convenient, clean, rapid, and high yielding in which the reactions were completed in just 15 min, and the yields obtained were up to 95%. This highly atom-economical domino process constructed two new C-C double bonds and a six-membered O/N-heterocyclic ring in a single synthetic operation. Its mechanism process was rationalized as involving sequential iminium ion formation, nucleophilic addition, and intramolecular annulation steps. Furthermore, the synthesized 2H-chromene derivatives were transformed into valuable indeno[2,1-c]chromenes, 5H-indeno[2,1-c]quinolines, and oxireno[2,3-c]chromene via a palladium-catalyzed double C-H bond activation process and epoxidation, respectively.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Subbiah Nagarajan
- Department of Chemistry, National Institute of Technology, Warangal, Warangal 506004, Telangana, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
2
|
Zhu ZQ, Wu TF, Pan HP, Peng JB, Ma AJ, Zhang XZ. Bismuth(III)-Catalyzed 1,8-Addition/Cyclization/Rearrangement of Propargylic para-Quinone Methides with 2-Vinylphenol: Synthesis of Indeno[2,1- c]chromenes. Org Lett 2023. [PMID: 36808990 DOI: 10.1021/acs.orglett.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The unique reactivity of in situ generated propargylic para-quinone methides as a new type of five-carbon synthon has been discovered by a novel bismuth(III)-catalyzed tandem annulation reaction. This 1,8-addition/cyclization/rearrangement cyclization cascade reaction is characterized by unusual structural reconstruction of 2-vinylphenol, involving cleavage of the C1'═C2' bond and formation of four new bonds. This method provides a convenient and mild approach to generate synthetically important functionalized indeno[2,1-c]chromenes. The mechanism of the reaction is proposed from several control experiments.
Collapse
Affiliation(s)
- Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Teng-Fei Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
3
|
Adris D, Taskesenligil Y, Akyildiz V, Essiz S, Saracoglu N. Solvent-Mediated Tunable Regiodivergent C6- and N1-Alkylations of 2,3-Disubstituted Indoles with p-Quinone Methides. J Org Chem 2023; 88:3132-3147. [PMID: 36779866 PMCID: PMC9990074 DOI: 10.1021/acs.joc.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Indium-catalyzed, solvent-enabled regioselective C6- or N1-alkylations of 2,3-disubstituted indoles with para-quinone methides are developed under mild conditions. Notably, highly selective and switchable alkylations were selectively achieved by adjusting the reaction conditions. Moreover, scalability and further transformations of the alkylation products are demonstrated, and this operationally simple methodology is amenable to the late-stage C6-functionalization of the indomethacin drug. The reaction pathways were explained with the support of experimental and density functional theory studies.
Collapse
Affiliation(s)
- Douaa Adris
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Yunus Taskesenligil
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Selcuk Essiz
- Department of Medical Services and Techniques, Vocational School of Health Services, Hakkari University, Hakkari 30000, Türkiye
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| |
Collapse
|
4
|
Wang Y, Wang B, Ren Z, Guan Z. Copper‐Catalyzed Synthesis of β‐Alkynyl Ketones from Propargylic Alcohols and Enamides. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Bo Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Zhihui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| |
Collapse
|
5
|
Qian C, Huang T, Sun J, Li P. Catalyst-Controlled Divergent Reactions of 2,3-Disubstituted Indoles with Propargylic Alcohols: Synthesis of 3 H-Benzo[ b]azepines and Axially Chiral Tetrasubstituted Allenes. Org Lett 2022; 24:6472-6476. [PMID: 36040372 DOI: 10.1021/acs.orglett.2c02642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Catalyst-controlled divergent reactions of 2,3-disubstituted indoles with propargylic alcohols were developed for the first time. In the presence of TsOH or B(C6F5)3 as catalyst, 2,3-disubstituted indoles reacted smoothly with 3-alkynyl-3-hydroxyisoindolinones to afford 3H-benzo[b]azepines by selective C2(sp2)-C3(sp2) ring expansion of indoles. In contrast, decreasing the catalyst strength (e.g., with chiral phosphoric acid) interrupted the cascade reactions, affording axially chiral tetrasubstituted allenes bearing an adjacent chiral quaternary carbon stereocenter. Control experiments provided insights into the reaction mechanism.
Collapse
Affiliation(s)
- Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tingting Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|