1
|
Wu J, Jia P, Kuniyil R, Liu P, Tang W. Dynamic Kinetic Stereoselective Glycosylation via Rh II and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to the Anomeric OH Bond for the Synthesis of Glycoconjugates. Angew Chem Int Ed Engl 2023; 62:e202307144. [PMID: 37532672 PMCID: PMC10530496 DOI: 10.1002/anie.202307144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Chemical synthesis of glycoconjugates is essential for studying the biological functions of carbohydrates. We herein report an efficient approach for the stereoselective synthesis of challenging α-linked glycoconjugates via a RhII /chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion to the anomeric OH bond. Notably, we observed excellent anomeric selectivity, excellent diastereoselectivity, broad substrate scope, and high efficiency for this glycosylation reaction by exploring various parameters of the cocatalytic system. DFT calculations suggested that the anomeric selectivity was mainly determined by steric interactions between the C2-carbon of the carbohydrate and the phenyl group of the metal carbenoid, while π/π interactions with the C2-OBn substituent on the carbohydrate substrate play a significant role for diastereoselectivity at the newly generated stereogenic center.
Collapse
Affiliation(s)
- Jicheng Wu
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Peijing Jia
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rositha Kuniyil
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
- Department of Chemistry, 1101 University Ave, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
2
|
Carvalho MHR, Ribeiro JPRS, De Castro PP, Passos STA, Neto BAD, Dos Santos HF, Amarante GW. Solvent Dependent Competitive Mechanisms for the Ugi Multicomponent Reaction: A Joint Theoretical and Experimental Study in the α-Acyl Aminocarboxamides vs α-Amino Amidines Formation. J Org Chem 2022; 87:11007-11020. [PMID: 35926126 DOI: 10.1021/acs.joc.2c01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic protocol for the preparation of α-acyl aminocarboxamides and α-amino amidines is proposed. The selectivity toward each of these two possible products was tuned by simple modifications of the reaction conditions. A broad scope is presented, allowing access to the desired products in up to 87% (Ugi adduct) and 93% (α-amino amidine). Theoretical calculations were carried out, and the analysis led to the proposal of a new mechanistic pathway for the Ugi reaction, in which methanol acts not only as the solvent but also as a reagent. High-resolution (tandem) mass spectrometry experiments allowed the detection and characterization of the key intermediate associated with this new and alternative reaction pathway, thus supporting the theoretical proposal.
Collapse
Affiliation(s)
- Marcelo H R Carvalho
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - João P R S Ribeiro
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Pedro P De Castro
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Saulo T A Passos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Hélio F Dos Santos
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Giovanni W Amarante
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
3
|
Santos IA, de Castro PP, dos Santos HF, Amarante GW. Mechanism and Origin of Enantioselectivity in Bifunctional Squaramide‐Catalyzed α‐Thiolation of Azlactones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Giovanni Wilson Amarante
- Federal University of Juiz de Fora Department of Chemistry Louren�o Kelmer, s/nS�o Pedro 36036-900 Juiz de Fora BRAZIL
| |
Collapse
|