1
|
Yang P, Wang L, Yan M, Yuan J, Xiao Y, Yang L, Xu X, Qu L. Visible-light-induced radical-cascade alkylation/cyclization of acrylamides: access to 3,3-dialkylated oxindoles. Org Biomol Chem 2025; 23:1653-1661. [PMID: 39777436 DOI: 10.1039/d4ob01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A visible-light-induced deoxygenative alkylation/cyclization of acrylamides with alcohols activated by CS2 has been developed by using xanthate salts as alkyl radical precursors in the presence of tricyclohexylphosphine. It proceeds through a tandem radical addition/cyclization process, and this protocol provides a reliable and practical approach to building the skeleton of 3,3-disubstituted oxindoles in moderate to good yields. Notable features of this reaction include readily available starting reagents, broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiujuan Xu
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Zhongyuan Institute of Science and Technology, Zhengzhou 451400, China
| |
Collapse
|
2
|
Wu ZL, Liu JT, Zhou RW, Deng MQ, Li X, Ji HT, He WM. NHPI-Mediated FeTiO 3-Photocatalyzed Semiheterogeneous Decarboxylative Acylarylation of Acrylamides with α-Oxocarboxylic Acids under Nitrogen. J Org Chem 2024; 89:12693-12700. [PMID: 39186693 DOI: 10.1021/acs.joc.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
FeTiO3 has emerged as an interesting semiconductor photocatalyst in organic synthesis. We herein describe a visible-light-induced semiheterogeneous strategy for the synthesis of 3-(2-oxoethyl)indolin-2-ones with moderate to good yields and good functional group compatibility using recyclable FeTiO3 as a photocatalyst and NHPI as a redox catalyst.
Collapse
Affiliation(s)
- Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun-Tao Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ri-Wei Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Mei-Qi Deng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Hou H, Ou W, Su C. Photochemical C(sp 3)-H Activation for Diversity-Oriented Synthesis of 3-Functionalized Oxindoles. J Org Chem 2024; 89:4120-4127. [PMID: 38439707 DOI: 10.1021/acs.joc.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Heteroatom-adjacent C(sp3) radical cyclization of N-arylacrylamides provides a straightforward pathway to synthesize valuable 3-functionalized oxindoles. Traditional cyclization reactions normally require harsh conditions or transition-metal catalysts. Here, we developed a metal-free, diversity-oriented synthesis of 3-functionalized oxindoles via photochemically induced selective cleavage of C(sp3)-H bonds. A variety of 3-substituted oxindoles with functionalities such as ethers, polyhalogens, benzyl, and formyl groups can be obtained by a rational design. This strategy is characterized by its simple operation and mild conditions, aligning well with the developmental requirements for sustainable chemistry. The gram-scale continuous-flow synthesis and efficient construction of bioactive molecules highlight its practical utility.
Collapse
Affiliation(s)
- Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
4
|
Tan Y, Huang H. Catalyst- and additive-free cascade radical addition/cyclization of N-arylacrylamides with trifluoropyruvates. Chem Commun (Camb) 2023; 59:13462-13465. [PMID: 37877176 DOI: 10.1039/d3cc04542k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, we introduce a photocatalyst- and additive-free method for the preparation of valuable 3,3-disubstituted oxindoles bearing trifluoromethyl alcohol moieties from readily available acrylamides and cheap trifluoropyruvates. The excited trifluoropyruvates under ultraviolet-light irradiation react efficiently with acrylamides delivering a variety of trifluoromethyl oxindoles with broad functional group tolerance and moderate to good yields. This protocol features mild reaction conditions, simple operation and ready scalability.
Collapse
Affiliation(s)
- Yongbo Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
5
|
Ikemoto Y, Chiba S, Li Z, Chen Q, Mori H, Nishihara Y. Carboazidation of Terminal Alkenes with Trimethylsilyl Azide and Cyclic Ethers Catalyzed by Copper Powder under Oxidative Conditions. J Org Chem 2023; 88:4472-4480. [PMID: 36947875 DOI: 10.1021/acs.joc.2c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Copper-catalyzed carboazidation of alkenes with trimethylsilyl azide and cyclic ethers has been achieved. The employment of naturally abundant copper catalysts allowed cyclic ethers to be used as alkylating reagents under oxidative conditions. The use of styrene derivatives and 1,1-diaryl alkenes afforded carboazidation products. In addition, application of five- and six-membered cyclic ethers to the present reaction gave target organic molecules bearing azide and cyclic ether groups with perfect regioselectivity. Radical trapping and clock experiments revealed that the present reaction proceeded via the radical pathway. To further demonstrate the utility of this carboazidation reaction, transformations from the azide group to the related nitrogen-containing compounds were also performed.
Collapse
Affiliation(s)
- Yuichi Ikemoto
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Chiba
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Xian N, Yin J, Ji X, Deng GJ, Huang H. Visible-Light-Mediated Photoredox Carbon Radical Formation from Aqueous Sulfoxonium Ylides. Org Lett 2023; 25:1161-1165. [PMID: 36757126 DOI: 10.1021/acs.orglett.3c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The visible-light-induced photoredox carbon radical formation from aqueous sulfoxonium ylides has been demonstrated for the first time. While direct reduction of sulfoxonium ylides by H2O efficiently generates the corresponding hydrocarbon compounds, the use of additional alkenes as radical acceptors alters the chemical reactivity to achieve alkene carboarylation of N-arylacrylamides. Mechanistic studies reveal two different reaction pathways involved in the carbon radical formation from aqueous sulfoxonium ylides resulting in reduction to release dimethyl sulfone and carboarylation to form DMSO.
Collapse
Affiliation(s)
- Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Jiang Yin
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
7
|
Xu D, Yu Y, Huang F, Zhou S, Zhang W. Photo‐induced sp3 C–H functionalization for the synthesis of 3,3‐disubstituted oxindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Fei Huang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Shuangliu Zhou
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|