1
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
2
|
Lv Y, Hao J, Huang J, Song L, Yue H, Wei W, Yi D. Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO. Chem Commun (Camb) 2024; 60:9801-9804. [PMID: 39162090 DOI: 10.1039/d4cc03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A metal-free and sustainable visible-light-mediated method for the preparation of organic nitrate esters has been developed through the aerobic nitrooxylation reaction of α-diazoesters and cyclic ethers with t-BuONO in the presence of dioxygen. This protocol provides an efficient approach to access nitrate esters with the advantages of clean energy, broad substrate scope, green oxidants, operational simplicity, and mild conditions.
Collapse
Affiliation(s)
- Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Lianhui Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 81000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Liu Y, Yang Q, Wang W, Fu Y, Ding Q, Peng Y. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones and cyclic ethers toward quinazoline-based hybrids. Org Biomol Chem 2024; 22:4332-4346. [PMID: 38726656 DOI: 10.1039/d4ob00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An effective approach for the construction of 4-short-chain ether attached carbonyl group-substituted quinazolines was developed. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones, and cyclic ethers, with a broad substrate scope and excellent functional group tolerance, under extremely mild conditions without the need for any additional additives and catalysts, selectively led to quinazoline-based hybrids in good to excellent yields. The synthesized hybrids, which are a conglomeration of a quinazoline, a short-chain ether, and a carbonyl group in one molecular skeleton, have potential for application in the development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Wei Wang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
5
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Takeda N, Maeda R, Yasui M, Ueda M. Synthesis of oxime ethers via a formal reductive O-H bond insertion of oximes to α-keto esters. Chem Commun (Camb) 2023; 60:172-175. [PMID: 38053438 DOI: 10.1039/d3cc05522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This study describes an efficient approach to access oxime ethers via P(III)-mediated O-H bond insertion reaction of oximes with α-keto esters. The strategy involves the protonation of in situ generated Kukhtin-Ramirez adducts, followed by SN2-type reaction. Important features include a good functional group tolerance, operational simplicity, and application to gram scale synthesis and the synthesis of an acaricide.
Collapse
Affiliation(s)
- Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Ryoya Maeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
7
|
Hota SK, Murarka S. Visible Light-Induced Imide Alkylation of Azauracils with Aryl Diazoesters. Chem Asian J 2023:e202301027. [PMID: 38052726 DOI: 10.1002/asia.202301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A visible light-induced green and sustainable N-H functionalization of (aza)uracils with α-diazo esters leading to imide alkylation is described. The reaction does not require any catalyst or additive and proceeds under mild conditions. Moreover, an intriguing three component coupling was observed when (aza)uracils were allowed to react with α-diazo esters in cyclic ethers (e. g. 1,4-dioxane, THF) as a solvent. Both the insertion and three-component coupling features broad scope with good to excellent yields and appreciable functional group tolerance. Notably, the divergent method enables modification of natural products and pharmaceuticals, thereby facilitates access to potentially biologically active compounds.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| |
Collapse
|
8
|
Maiti D, Munan S, Singh S, Das R, Samanta A, Sen S. Light induced diversity-oriented synthesis (DOS) library of annulated indolizine fluorophores for imaging non-lysosomal lipid droplets (LDs). J Mater Chem B 2023; 11:2191-2199. [PMID: 36779938 DOI: 10.1039/d2tb02656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the design, synthesis, and biological evaluation of a novel class of annulated indolizines as fluorescent probes. The compounds were generated through an eco-friendly, blue LED-induced domino reaction in ethyl acetate. A library of 24 coloured compounds exhibited tuneable emissions. One of the compounds (which we call DASS-fluor) proved to be an excellent polarity sensing probe. It is biocompatible, photostable, and detects specific types of lipid droplets (LDs in response to oleic acid, stress, and drug-induced autophagy in lungs and hepatic carcinoma cells). In comparison to Nile Red (a commercial probe), DASS-fluor can differentiate non-lysosomal LDs from lysosomal LDs and offers an advantage in precisely mapping drug-induced lipidosis caused by increased non-lysosomal LDs in cancerous cells. This unique probe could be a potential fluorescent marker for specific types of lipidosis induced by drugs.
Collapse
Affiliation(s)
- Debajit Maiti
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Shweta Singh
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Ranajit Das
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Subhabrata Sen
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
9
|
Zhu K, Zhou X, Ren Y, Dong L, Zhao G, Zhao J, Li P. Visible light-induced carbene reactivity of acceptor diazoalkanes: deconstructive difunctionalizations of cyclic ethers with nucleophiles. Chem Commun (Camb) 2023; 59:631-634. [PMID: 36533686 DOI: 10.1039/d2cc05632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A visible light-induced carbene reactivity of acceptor diazoalkanes has been developed for the synthesis of difunctionalized ethers from cyclic ethers and various N/O/S nucleophiles.
Collapse
Affiliation(s)
- Keyong Zhu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Xinlong Zhou
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Yikun Ren
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Linhui Dong
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Guanzhen Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China.
| |
Collapse
|
10
|
Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J Org Chem 2022; 87:12921-12931. [PMID: 36130274 DOI: 10.1021/acs.joc.2c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple visible-light-initiated strategy has been established for the construction of organophosphorus compounds via aerobic multicomponent reaction of α-diazoesters, cyclic ethers, and P(O)H compounds under air. A number of phosphonates and phosphinates could be efficiently isolated in moderate to good yields without the use of photosensitizers and metal reagents. This multicomponent reaction has advantages of mild condition, simple operation, eco-friendly energy, good functional-group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| |
Collapse
|
11
|
Cai BG, Yao WZ, Li L, Xuan J. Visible-Light-Induced Imide Synthesis through a Nitrile Ylide Formation/Trapping Cascade. Org Lett 2022; 24:6647-6652. [PMID: 36053175 DOI: 10.1021/acs.orglett.2c02671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-promoted three component reaction of diazo compounds, nitriles, and carboxylic acids is reported. The reaction utilizes acceptor-only diazo compounds as carbene precursors and nitriles as carbene-trapping reagents to form the key nitrile ylides. Under the optimal reaction conditions, a wide range of imide products were obtained in good to excellent yields. The gram-scale synthesis and synthetic application of the imide products to form isoquinoline-1,3(2H,4H)-dione derivatives further proved the value of this method.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Wei-Zhong Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| |
Collapse
|
12
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
13
|
Stivanin ML, Gallo RDC, Spadeo JPM, Cormanich RA, Jurberg ID. A Visible Light-Mediated Three-Component Strategy Based on the Ring-Opening of Cyclic Ethers with Aryldiazoacetates and Nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d1qo01780b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A blue light-promoted reaction between aryldiazoacetates and different nucleophiles has been developed in the presence of THF (and other cyclic ethers) as solvent, allowing the incorporation of these three elements...
Collapse
|