1
|
Anderson DE, Truong AHN, Hevia E. Dual Basicity and Nucleophilicity of Organosodium Reagents in Benzylic C-H Additions of Toluenes to Diarylethenes and Ketones. Chemistry 2024; 30:e202400492. [PMID: 38651778 DOI: 10.1002/chem.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Profiting from the dual high basicity and nucleophilicity of organosodium complexes, here we report the stepwise lateral metalation of a wide range of alkyl arenes (MeAr), mediated by hydrocarbon-soluble NaCH2SiMe3 ⋅ PMDETA (PMDETA=N,N,N',N'',N''-pentamethyldiethylenetriamine), followed by nucleophilic addition to diarylethenes of the newly generated NaCH2Ar ⋅ PMDETA complexes. This method grants access to a range of functionalised hydrocarbons in excellent yields and can be upgraded to catalytic regimes when using trans-stilbene, a 10 mol% of the alkyl sodium base and toluene as a solvent. Extending this approach to aromatic ketones leads to the formation of stilbenes under mild reaction conditions, resulting from the deprotonative coupling of toluenes with ketones. Combining spectroscopic studies with the trapping and characterisation of key reaction intermediates, mechanistic insights have been gained, advancing the understanding of coordination effects in organosodium chemistry, and shedding light on their special reactivity profiles.
Collapse
Affiliation(s)
- David E Anderson
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Alex H N Truong
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
2
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Zheng J, Hua R, Wang YE, Lin T, Ou M, Wu Y, Shi EH, He J, Xiong D, Mao J. Synthesis of Homoallylamines Enabled by Cobalt or Palladium Catalyzed Allylic Substitution of Azaarylmethylamines. Org Lett 2024; 26:2982-2986. [PMID: 38602341 DOI: 10.1021/acs.orglett.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pd(OAc)2/Nixantphos or CoI2/Nixantphos catalyzed allylic substitutions with weakly acidic C(sp)3-H bonds of azaarylmethylamines are described. This method facilitates access to various kinds of heteroaryl rings containing homoallylamines (39 examples, 30-98% yields) with excellent functional group tolerance and diastereoselectivity. Compared with the Pd/Nixantphos complex, the Co/Nixantphos catalysis could obtain the cyclic products with good to excellent diastereoselectivities. Importantly, the CoI2/(R,R)-Me-Duphos catalyzed reactions exhibit moderate enantioselectivity. Additionally, the scalability of this transformation is successfully demonstrated.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Rui Hua
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingjie Ou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - En-Hao Shi
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing He
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Ma P, Wang Y, Ma N, Wang J. Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines. J Org Chem 2024. [PMID: 38193431 DOI: 10.1021/acs.joc.3c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Wacker J, Lynch JR, Banerjee S, Macdonald PA, Kennedy AR, Sarkar B, Mulvey RE. Isolable rubidium and caesium derivatives of common organic carbonyl compounds. Chem Commun (Camb) 2023; 60:91-94. [PMID: 38019118 DOI: 10.1039/d3cc05527b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Light alkali metal (Li, Na, K) amides have a long history of synthetic utility, but heavier (Rb, Cs) congeners have barely been studied. This study reveals remarkable structurally complex outcomes of reacting AM(HMDS) (AM = Rb, Cs; HMDS = hexamethyldisilazide) with benzaldehyde and acetophenone. Though complicated, reactions give a diversity of eye-catching isolated products, an enolate with a hexagonal prismatic network, two dienolates with distinct extended ladder motifs, and two β-imino-alkoxides comprising zig-zag chains of metal-oxygen bonds in infinite cages.
Collapse
Affiliation(s)
- Jakoba Wacker
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Jennifer R Lynch
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Sumanta Banerjee
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Peter A Macdonald
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Robert E Mulvey
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|
6
|
Ma R, Wang YE, Xiong D, Mao J. A Tandem Madelung Indole Synthesis Mediated by a LiN(SiMe 3) 2/CsF System. Org Lett 2023; 25:7557-7561. [PMID: 37818792 DOI: 10.1021/acs.orglett.3c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A tandem Madelung indole synthesis by the reaction of methyl benzoate and N-methyl-o-toluidine has been discovered. The combination of LiN(SiMe3)2 with CsF is the key factor, which secures the high efficiency of such tandem transformations. Simply combining methyl benzoate, N-methyl-o-toluidine LiN(SiMe3)2, and CsF generated a diverse array of N-methyl-2-phenylindoles (31 examples, 50-90% yields). Furthermore, the scalability and the poststructural modifications of this indole synthesis were demonstrated.
Collapse
Affiliation(s)
- Ruyuan Ma
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Banerjee S, Ballmann GM, Evans MJ, O'Reilly A, Kennedy AR, Fulton JR, Coles MP, Mulvey RE. Three Oxidative Addition Routes of Alkali Metal Aluminyls to Dihydridoaluminates and Reactivity with CO 2. Chemistry 2023; 29:e202301849. [PMID: 37429823 DOI: 10.1002/chem.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.
Collapse
Affiliation(s)
- Sumanta Banerjee
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Gerd M Ballmann
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Robert E Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| |
Collapse
|
8
|
Macdonald PA, Banerjee S, Kennedy AR, van Teijlingen A, Robertson SD, Tuttle T, Mulvey RE. Alkali Metal Dihydropyridines in Transfer Hydrogenation Catalysis of Imines: Amide Basicity versus Hydride Surrogacy. Angew Chem Int Ed Engl 2023; 62:e202304966. [PMID: 37132607 PMCID: PMC10952797 DOI: 10.1002/anie.202304966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
Catalytic reduction of a representative set of imines, both aldimines and ketimines, to amines has been studied using transfer hydrogenation from 1,4-dicyclohexadiene. Unusually, this has been achieved using s-block pre-catalysts, namely 1-metallo-2-tert-butyl-1,2-dihydropyridines, 2-tBuC5 H5 NM, M(tBuDHP), where M=Li-Cs. Reactions have been monitored in C6 D6 and tetrahydrofuran-d8 (THF-d8 ). A definite trend is observed in catalyst efficiency with the heavier alkali metal tBuDHPs outperforming the lighter congeners. In general, Cs(tBuDHP) is the optimal pre-catalyst with, in the best cases, reactions producing quantitative yields of amines in minutes at room temperature using 5 mol % catalyst. Supporting the experimental study, Density Functional Theory (DFT) calculations have also been carried out which reveal that Cs has a pathway with a significantly lower rate determining step than the Li congener. In the postulated initiation pathways DHP can act as either a base or as a surrogate hydride.
Collapse
Affiliation(s)
- Peter A. Macdonald
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Sumanta Banerjee
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | | | - Stuart D. Robertson
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Tell Tuttle
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Robert E. Mulvey
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
9
|
Shigeno M, Kajima A, Toyama E, Korenaga T, Yamakoshi H, Nozawa-Kumada K, Kondo Y. LiHMDS-Mediated Deprotonative Coupling of Toluenes with Ketones. Chemistry 2023; 29:e202203549. [PMID: 36479733 DOI: 10.1002/chem.202203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that lithium hexamethyldisilazide (LiHMDS) acts as an effective base for deprotonative coupling reactions of toluenes with ketones to afford stilbenes. Various functionalities (halogen, OCF3 , amide, Me, aryl, alkenyl, alkynyl, SMe, and SPh) are allowed on the toluenes. Notably, this system proved successful with low-reactive toluenes bearing a large pKa value compared to that of the conjugate acid of LiHMDS (hexamethyldisilazane, 25.8, THF), as demonstrated by 4-phenyltoluene (38.57, THF) and toluene itself (∼43, DMSO).
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kajima
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Eito Toyama
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering, Iwate University Ueda, Morioka, 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Anderson DE, Tortajada A, Hevia E. Highly Reactive Hydrocarbon Soluble Alkylsodium Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides. Angew Chem Int Ed Engl 2023; 62:e202218498. [PMID: 36636916 DOI: 10.1002/anie.202218498] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Kou S, Huo J, Wang Y, Sun S, Xue F, Mao J, Zhang J, Chen L, Walsh PJ. Synthesis of Indoles via Domino Reactions of 2-Methoxytoluene and Nitriles. J Org Chem 2022; 88:5147-5152. [PMID: 36520533 DOI: 10.1021/acs.joc.2c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2-Arylindoles are privileged structures widely present in biologically active molecules. New sustainable synthetic routes toward their synthesis are, therefore, in high demand. Herein, a mixed base-promoted benzylic C-H deprotonation of commercially available ortho-anisoles, addition of the resulting anion to benzonitriles, and SNAr to displace the methoxy group provide indoles. A diverse array of 2-arylindoles is prepared with good yields (>30 examples, yields up to 99%) without added transition metal catalysts.
Collapse
Affiliation(s)
- Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
12
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
13
|
Xu X, Yan L, Zhang ZK, Lu B, Guo Z, Chen M, Cao ZY. Na2S-Mediated One-Pot Selective Deoxygenation of α-Hydroxyl Carbonyl Compounds including Natural Products. Molecules 2022; 27:molecules27154675. [PMID: 35897854 PMCID: PMC9330554 DOI: 10.3390/molecules27154675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.
Collapse
Affiliation(s)
- Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
- Correspondence: (X.X.); (Z.-Y.C.)
| | - Leyu Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| | - Bingqing Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhuangwen Guo
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Mengyue Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
- Correspondence: (X.X.); (Z.-Y.C.)
| |
Collapse
|
14
|
Sreedharan R, Pal PK, Panyam PKR, Priyakumar UD, Gandhi T. Synthesis of α‐aryl ketones by harnessing the non‐innocence of toluene and its derivatives: Enhancing the acidity of methyl arenes by a Brønsted base and their mechanistic aspects. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramdas Sreedharan
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - Pradeep Kumar Pal
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Pradeep Kumar Reddy Panyam
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - U Deva Priyakumar
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Thirumanavelan Gandhi
- VIT University Materials Chemistry Division, School of Advanced Sciences VIT University 632014 Vellore INDIA
| |
Collapse
|
15
|
Huo J, Chen L, Si H, Yuan S, Li J, Dong H, Hu S, Huo J, Kou S, Xiong D, Mao J, Zhang J. 2-Arylindoles: Concise Syntheses and a Privileged Scaffold for Fungicide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6982-6992. [PMID: 35658436 DOI: 10.1021/acs.jafc.1c08085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Indole is a popular and functional scaffold existing widely in the fields of medicine, pesticides, spices, food and feed additives, dyes, and many others. Among indoles, 2-arylindole represents a particular and interesting subset but has attracted less attention for drug discovery. In this study, we report a general, practical one-pot assembly of a variety of 2-arylindole derivatives. To develop novel fungicide scaffolds, their fungicide activity was also evaluated. The bioassay results showed that many of the synthesized 2-arylindoles exhibited considerable fungicidal activities especially toward Rhizoctonia cerealis, and several demonstrated an inhibition rate of more than 90%. Notably, 4-fluoro-2-phenyl-1H-indole 6e was obtained with a broad spectrum of fungicidal activities, which showed excellent growth inhibition activities against R. cerealis, Rhizoctonia solani, Botrytis cinerea, Magnaporthe oryza, and Sclerotinia sclerotiorum with EC50 values of 2.31, 4.98, 6.78, 10.57, and 17.80 μg/mL, respectively. Preliminary fungicidal mode of action of 6e showed a significant inhibition effect on mycelial growth and spore germination. These results indicated that 2-arylindoles as privileged scaffolds exhibited potential fungicidal activities that deserve further study.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Helong Si
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shitao Yuan
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jiahui Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haijiao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinglei Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| |
Collapse
|
16
|
Song X, Zhang J, Wu YX, Ouyang Q, Du W, Chen YC. Asymmetric Formal Nucleophilic o-Cresolylation with Morita-Baylis-Hillman Carbonates of 2-Cyclohexenones via Palladium Catalysis. J Am Chem Soc 2022; 144:9564-9569. [PMID: 35623059 DOI: 10.1021/jacs.2c04101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here we report an asymmetric formal nucleophilic o-cresolylation reaction with the Morita-Baylis-Hillman (MBH) carbonates from 2-cyclohexanones and diverse aldehydes under palladium catalysis, by in situ generation of electron-neutral and HOMO-raised η2-Pd(0)-dienone complexes via an oxidative insertion/π-σ-isomerization/β-H elimination activation sequence. The subsequent umpolung vinylogous addition to a variety of imines is realized upon Pd(0)-mediated π-Lewis base catalysis, finally furnishing o-cresolylated products followed by another cascade of a π-σ-isomerization/β-H elimination/aromatization process. Moderate to excellent diastereo- and enantioselectivity are achieved for substantial substrate assemblies by employing a newly designed bulky chiral phosphonamidite ligand, and the resultant multifunctional products can be facilely elaborated to access diverse enantioenriched architectures. In addition, the catalytic reaction pathway is finely illuminated by control experiments.
Collapse
Affiliation(s)
- Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu-Xing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
17
|
Xu X, Ou M, Wang YE, Lin T, Xiong D, Xue F, Walsh P, Mao J. Alkali-Amide Controlled Selective Synthesis of 7-Azaindole and 7-Azaindoline through Domino Reactions of 2-Fluoro-3-methylpyridine and Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00339b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azaindoles and azaindolines are important core structures in pharmaceuticals and natural products, which have found wide applications in the field of medicinal chemistrty. In this study, we developed a novel...
Collapse
|
18
|
Cai C, Zou D. Recent Progress in Benzylic C(sp 3)—H Functionalization of Toluene and Its Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|