1
|
Khandelia T, Panigrahi P, Ghosh S, Mandal R, Doley B, Patel BK. Solvent Dictated Organic Transformations. Chem Asian J 2024; 19:e202400603. [PMID: 39509646 DOI: 10.1002/asia.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Solvent plays an important role in many chemical reactions. The C-H activation has been one of the most powerful tools in organic synthesis. These reactions are often assisted by solvents which not only provide a medium for the chemical reactions but also facilitate reaching to the product stage. The solvent helps the reaction profile both chemically and energetically to reach the targeted product. Organic transformations via C-H activation from the solvent assistance perspective has been discussed in this review. Various solvents such as tetrahydrofuran (THF), MeCN, dichloromethane (DCM), dimethoxyethane (DME), 1,2-dichloroethane (1,2-DCE), dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropyl nitrile (iPrCN), 1,4-dioxane, AcOH, trifluoroacetic acid (TFA), Ac2O, PhCF3, chloroform (CHCl3), H2O, N-methylpyrrolidone (NMP), acetone, methyl tert-butyl ether (MTBE), toluene, p-xylene, alcohols, MeOH, 1,1,1-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), tert-amyl alcohol and their roles are discussed. The exclusive role of the solvent in various transformations has been deliberated by highlighting the substrate scope, along with the proposed mechanisms. For easy classification, the review has been divided into three parts: (i) solvent-switched divergent C-H activation; (ii) C-H bond activation with solvent as the coupling reagent, and (iii) C-H activation with solvent caging and solvent-assisted electron donor acceptor (EDA) complex formation and autocatalysis.
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Barlina Doley
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
2
|
Naharwal S, Dinkar Kharat N, Bajaj K, Panda SS, Sakhuja R. Rhodium-Catalyzed Functionalization and Annulation of N-Aryl Phthalazinediones with Allyl Alcohols. Chem Asian J 2024:e202400711. [PMID: 39176435 DOI: 10.1002/asia.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
A direct ortho-Csp2-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)2⋅2H2O as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields. Furthermore, allyl alcohol showcased distinct reactivity in presence of different additives to produce ortho-allylated, oxidative and non-oxidative [4+2] annulated products.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Narendra Dinkar Kharat
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Siva S Panda
- Department of Chemistry and Biochemistry & Department, of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
3
|
Hu J, Liu J, Cui W, Zheng L, Wang R, Liu ZQ, Pu S. Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols: access to indazolo[1,2- a]indazolones. Org Biomol Chem 2024; 22:6500-6505. [PMID: 39101292 DOI: 10.1039/d4ob01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A convenient and efficient synthesis of structurally diverse indazolo[1,2-a]indazolones via a Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols has been achieved by combining C-H and C-C bond cleavage. This cascade reaction features readily available starting materials, good functional group tolerance, broad substrate scope, and excellent atom-economy.
Collapse
Affiliation(s)
- Jiang Hu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Wenwen Cui
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| |
Collapse
|
4
|
Chiu WJ, Chu TY, Barve IJ, Sun CM. Parallel Synthesis of Pyrazolone-Fused Cinnolines by the Palladium-Catalyzed [4 + 2] Annulation of Pyrazol-3-ones with Substituted Allenoates. J Org Chem 2024; 89:395-401. [PMID: 38133555 DOI: 10.1021/acs.joc.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The synthesis of pyrazolone-fused cinnolines from pyrazol-3-ones and α,γ-substituted allenoates via a palladium-catalyzed C-H activation/annulation cascade was developed. Mechanistic studies revealed the course of the reaction. Initially, N-acyl-valine ligand-assisted ortho-C-H activation gives ortho-alkenylated intermediate. Subsequent cyclopalladation and migratory insertion of allenoate give a seven-membered palladacycle. Reductive elimination finally furnishes pyrazolone-fused cinnolines.
Collapse
Affiliation(s)
- Wei-Jung Chiu
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
| | - Ting-Yen Chu
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
| | - Indrajeet J Barve
- Department of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra, India
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan First Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
5
|
Shu B, Song JL, Chen SY, Zheng YC, Zhang SS. Rh(III)-Catalyzed C-H Functionalization/Annulation of 1-Arylindazolones: Divergent Synthesis of Fused Indazolones and Allyl Indazolones. J Org Chem 2023; 88:3499-3508. [PMID: 36891880 DOI: 10.1021/acs.joc.2c02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Rh(III)-catalyzed C-H/N-H annulation and C-H allylation of phenylindazolones have been realized by employing 5-methylene-1,3-dioxan-2-one and 4-vinyl-1,3-dioxolan-2-one as scalable cross-coupling partners, delivering functionalized indazolone fused heterocycles and branched and linear allyl indazolones respectively in moderate to high yield. These divergent synthesis protocols showcase mild conditions, broad substrate scope, and high functional-group compatibility. In addition, scale-up synthesis and preliminary mechanistic exploratory were also accomplished.
Collapse
Affiliation(s)
- Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Mahesha CK, Borade SA, Tank D, Bajaj K, Bhambri H, Mandal SK, Sakhuja R. Tandem Transformation of Indazolones to Quinazolinones through Pd-Catalyzed Carbene Insertion into an N-N Bond. J Org Chem 2023; 88:1457-1468. [PMID: 36631396 DOI: 10.1021/acs.joc.2c02437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Serendipitous and expedite transformation of 1-aryl- and 2-aryl-1,2-dihydro-3H-indazol-3-ones to 1,2-di(hetero)aryl- and 2,3-di(hetero)aryl-2,3-dihydroquinazolin-4(1H)-ones, respectively, was achieved in high efficiency by reacting them with aldehydic N-tosylhydrazones. The protocol proceeded through a cascade process involving base-mediated Pd-carbenoid generation by the decomposition of N-tosylhydrazones, nucleophilic attack of indazolone on the Pd-carbenoid complex, and intramolecular ring expansion via N-N bond cleavage. The utility of the strategy is demonstrated toward the synthesis of bioactive NPS 53574, a calcium receptor antagonist.
Collapse
Affiliation(s)
- Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Somnath Arjun Borade
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Disha Tank
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali 140306, Punjab, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali 140306, Punjab, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
7
|
Zhang SS, Chen SY, Zheng YC, Liu XG, Song JL, Shu B, Zheng T, Xiao L, Cao H. Indazolones Directed Rh(III)‐Catalyzed C‐H Amidation of Arenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | - Bing Shu
- Guangdong Pharmaceutical University CHINA
| | - Tao Zheng
- Guangdong Pharmaceutical University CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University CHINA
| | - Hua Cao
- Guangdong Pharmaceutical University CHINA
| |
Collapse
|
8
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
9
|
Naharwal S, Karishma P, Mahesha CK, Bajaj K, Mandal SK, Sakhuja R. Ruthenium-catalyzed (spiro)annulation of N-aryl-2,3-dihydrophthalazine-1,4-diones with quinones to access pentacyclic spiro-indazolones and fused-cinnolines. Org Biomol Chem 2022; 20:4753-4764. [PMID: 35616276 DOI: 10.1039/d2ob00493c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II)-catalyzed strategies were developed for the [4 + 1] and [4 + 2] oxidative coupling between N-aryl-2,3-dihydrophthalazine-1,4-diones and 1,4-benzoquinones, achieving spiro-indazolones and fused-cinnolines, respectively. Mild, aerobic and external oxidant-free conditions, as well as the use of a ruthenium catalyst for such (spiro)annulative strategies with quinones over reported Rh/Ir-catalyts, underline the rewards of the disclosed protocols.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
10
|
Zheng YC, Shu B, Zeng YF, Chen SY, Song JL, Liu YZ, Xiao L, Liu XG, Zhang X, Zhang SS. A cascade indazolone-directed Ir( iii)- and Rh( iii)-catalyzed C(sp 2)–H functionalization/[4 + 2] annulation of 1-arylindazolones with sulfoxonium ylides to access chemically divergent 8 H-indazolo [1,2- a]cinnolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00871h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indazolone-directed chemoselective synthesis of 8H-indazolo [1,2-a]cinnolines has been realized via a cascade Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed C–H activation/cyclization reaction of 1-arylindazolones with sulfoxonium ylides.
Collapse
Affiliation(s)
- Yi-Chuan Zheng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Shao-Yong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yan-Zhi Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xu-Ge Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|