1
|
Li MJ, Xiao HJ, Xu P, Wu LT, Chen SQ, Zhang Z, Xu H. Mechanosynthesis of Pyrrole-2-carboxylic Acids via Copper-Catalyzed Spiroannulation/Ring-Opening Aromatization of 4-Arylidene Isoxazol-5-ones with Enamino Esters. Org Lett 2024; 26:4189-4193. [PMID: 38743432 DOI: 10.1021/acs.orglett.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An efficient and practical tandem reaction of 4-arylidene isoxazol-5-ones with enamino esters catalyzed by an inexpensive copper salt has been established in a ball mill. This innovative approach yields a diverse array of structurally novel pyrrole-2-carboxylic acids, showing excellent tolerance toward different functional groups. By integrating spiroannulation and ring-opening aromatization processes, this protocol introduces a facile and cost-effective strategy for synthesizing highly functionalized pyrrole derivatives.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui-Juan Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
2
|
Suraj, Swamy KCK. [Au]-Catalyzed Cyclization of Propargyl-Tethered Ene-Amides: Substrate-Dependent Access to Tetrasubstituted Pyrroles, Aminophenols, and Dihydropyridines. J Org Chem 2024; 89:5518-5535. [PMID: 38598775 DOI: 10.1021/acs.joc.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
[Au]-catalyzed and substrate-dependent intramolecular cyclization of sulfonyl ene-amides with a pendant propargyl group afford tetrasubstituted pyrroles, o-aminophenols, or 1,6-dihydropyridine carbaldehydes. While the pyrroles and aminophenols are formed when the propargylic alkyne is terminal, dihydropyridines are formed when internal alkyne is present. Internal alkyne substrates with 2-thienyl and 3-thienyl groups give different types of dihydropyridines. The dihydropyridines so obtained can be readily converted to nicotinaldehydes with concomitant sulfonyl migration upon heating in xylene.
Collapse
Affiliation(s)
- Suraj
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
3
|
Lan R, Yager B, Jee Y, Day CS, Jones AC. Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination. Beilstein J Org Chem 2024; 20:479-496. [PMID: 38440168 PMCID: PMC10910400 DOI: 10.3762/bjoc.20.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 03/06/2024] Open
Abstract
Kinetic studies on the intramolecular hydroamination of protected variants of 2,2-diphenylpent-4-en-1-amine were carried out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron-withdrawing phosphines. A DCM/alcohol cooperative effect was quantified, and a continuum of isotope effects was measured with low KIE's in the absence of deuterated alcoholic solvent, increasing to large solvent KIE's when comparing reactions in pure MeOH to those in pure MeOH-d4. The effects are interpreted both within the context of a classic gold π-activation/protodeauration mechanism and a general acid-catalyzed mechanism without intermediate gold alkyls.
Collapse
Affiliation(s)
- Ruichen Lan
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Brock Yager
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Yoonsun Jee
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Cynthia S Day
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Amanda C Jones
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| |
Collapse
|
4
|
Munawar A, Maltz LT, Liu WC, Gabbaï FP. Synthesis of an Indazole/Indazolium Phosphine Ligand Scaffold and Its Application in Gold(I) Catalysis. Organometallics 2023; 42:2742-2746. [PMID: 38357473 PMCID: PMC10863396 DOI: 10.1021/acs.organomet.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/16/2024]
Abstract
Advances in ligand development have allowed for the fine-tuning of gold catalysis. To contribute to this field, we designed an indazole phosphine ligand scaffold that allows facile introduction of cationic charge through methylation. With minimal changes to the structure upon methylation, we could assess the importance of the electronic effects of the insertion of a positive charge on the catalytic activity of the resulting gold(I) complex. Using the benchmark reactions of propargyl amide cyclization and enyne cyclization with and without hexafluoroisopropanol (HFIP), we observed marked differences in the catalytic activities of the neutral and cationic gold species.
Collapse
Affiliation(s)
- Asima Munawar
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Logan T. Maltz
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Wei-Chun Liu
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
5
|
Zhang XQ, Zhang C, Hu Z, Wang Y. Gold-Catalyzed Divergent N/ O-Vinylations of trans-2-Butene-1,4-amino Alcohols with Alkynes and the Cascade Rearrangements/Cyclizations to Dihydropyrroles and Dihydrofurans. Org Lett 2023; 25:5800-5805. [PMID: 37498148 DOI: 10.1021/acs.orglett.3c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although the transition-metal-catalyzed vinylations of amines and alcohols via the additions to alkynes have been well developed, the selective vinylations of amino alcohols have been merely investigated. Herein, we report the gold-catalyzed divergent additions of trans-2-butene-1,4-amino alcohols' N-H and O-H groups to alkynes. The allyl enamine and allyl vinyl ether adducts then underwent a cascade (Aza-) Claisen rearrangement/cyclization sequence, furnishing the functionalized dihydropyrrole and dihydrofuran products.
Collapse
Affiliation(s)
- Xiao-Qian Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, China
| | - Congdi Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, China
| | - Zhiyou Hu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, China
| |
Collapse
|
6
|
Wang H, Zhou T, Wu M, Ye Q, He X. Substituent-Controllable Cascade Regioselective Annulation of β-Enaminones with N-Sulfonyl Triazoles for Modular Access to Imidazoles and Pyrroles. Molecules 2023; 28:molecules28114416. [PMID: 37298892 DOI: 10.3390/molecules28114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
A controllable synthesis of trisubstituted imidazoles and pyrroles has been developed through rhodium(II)-catalyzed regioselective annulation of N-sulfonyl-1,2,3-trizaoles with β-enaminones. The imidazole ring was formed through a 1,1-insertion of the N-H bond to α-imino rhodium carbene, followed by a subsequent intramolecular 1,4-conjugate addition. This occurred when the α-carbon atom of the amino group was bearing a methyl group. Additionally, the pyrrole ring was constructed by utilizing a phenyl substituent and undergoing intramolecular nucleophilic addition. The mild conditions, good tolerance towards functional groups, gram-scale synthesis capability, and ability to undergo valuable transformations of the products qualify this unique protocol as an efficient tool for the synthesis of N-heterocycles.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
7
|
Ghosh T, Bhakta S. Advancements in Gold-Catalyzed Cascade Reactions to Access Carbocycles and Heterocycles: An Overview. CHEM REC 2023; 23:e202200225. [PMID: 36543388 DOI: 10.1002/tcr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Indexed: 12/24/2022]
Abstract
This review summarizes recent developments (from 2006 to 2022) in numerous important and efficient carbo- and heterocycle generations using gold-catalyzed cascade protocols. Herein, methodologies involve selectivity, cost-effectiveness, and ease of product formation being controlled by the ligand as well as the counter anion, catalyst, substrate, and reaction conditions. Gold-catalyzed cascade reactions covered different strategies through the compilation of various approaches such as cyclization, hydroarylation, intermolecular and intramolecular cascade reactions, etc. This entitled reaction is also useful for the synthesis of spiro, fused, bridged carbo- and heterocycles.
Collapse
Affiliation(s)
- T Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India.,Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| | - S Bhakta
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| |
Collapse
|
8
|
Shi R, Wang X, Zhang X, Chen S, Wang ZL, Qi H, Xu XM. Acid/Base-Steered Cascade Cyclization: An Efficient One-Pot Access to Diverse Isobenzofuranone and Isoindolobenzoxazinone Derivatives. Molecules 2023; 28:molecules28031443. [PMID: 36771107 PMCID: PMC9921644 DOI: 10.3390/molecules28031443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We herein report the acid/base-steered two distinct reaction pathways of 2-acylbenzoic acids with isatoic anhydrides. In the presence of Na2CO3, the cascade process consists of the cyclization of 2-acetylbenzoic acid and nucleophilic ring-opening reaction of isatoic anhydride to furnish isobenzofuranone derivatives with high efficiency. However, p-toluenesulfonic acid can promote the product isobenzofuranones to undergo sequential intramolecular rearrangment, nucleophilic addition and cyclization reaction to produce diverse isoindolobenzoxazinones in good yields. The synthetic utility of this method was further demonstrated by the gram-scale preparation of the desired products and the facile transformations of the resulting products.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiangmin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zu-Li Wang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| | - Huijing Qi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| |
Collapse
|
9
|
Kumar M, Kaliya K, Maurya SK. Recent progress in the homogeneous gold-catalysed cycloisomerisation reactions. Org Biomol Chem 2023; 21:3276-3295. [PMID: 36989042 DOI: 10.1039/d2ob02015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This review focuses on recent advancements in the efficacy of gold catalysts for the cycloisomerisation of ynamides, diynes, and 1,n-enynes to build complex molecules, with critical insight into their mechanism and reaction scope.
Collapse
Affiliation(s)
- Mahender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Kajal Kaliya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sushil K Maurya
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, UP, India.
| |
Collapse
|
10
|
Gharpure SJ, Kumari S. Protecting Group-Dependent Synthesis of Densely Substituted Dihydropyrroles v/s Pyrroles via 5 -Exo-trig Cascade Radical Cyclization to Alkynyl Vinylogous Carbamates. J Org Chem 2022; 87:6781-6793. [PMID: 35544612 DOI: 10.1021/acs.joc.2c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Densely substituted dihydropyrroles could be synthesized with excellent diastereoselectivity via 5-exo-trig cascade radical cyclization to alkynyl vinylogous carbamates. N-Alkyl/acyl protected alkynyl vinylogous carbamates upon radical cyclization using thiophenol gave substituted pyrroles as against dihydropyrroles, which were formed with N-sulfonyl protecting groups. This enabled a rare example wherein both dihydropyrrole and pyrrole rings are assembled in the same reaction. This strategy could be used for the synthesis of an unprecedented adjacent polyheterocyclic system having a furan-thiophene-pyrrole motif. When vinylogous carbamate is embedded in the isoindole moiety, a pyridoisoindole derivative was formed with excellent diastereoselectivity, instead of the expected pyrroloisoindole product.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanyog Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|