1
|
Wu ZL, Liu JT, Zhou RW, Deng MQ, Li X, Ji HT, He WM. NHPI-Mediated FeTiO 3-Photocatalyzed Semiheterogeneous Decarboxylative Acylarylation of Acrylamides with α-Oxocarboxylic Acids under Nitrogen. J Org Chem 2024; 89:12693-12700. [PMID: 39186693 DOI: 10.1021/acs.joc.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
FeTiO3 has emerged as an interesting semiconductor photocatalyst in organic synthesis. We herein describe a visible-light-induced semiheterogeneous strategy for the synthesis of 3-(2-oxoethyl)indolin-2-ones with moderate to good yields and good functional group compatibility using recyclable FeTiO3 as a photocatalyst and NHPI as a redox catalyst.
Collapse
Affiliation(s)
- Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun-Tao Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ri-Wei Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Mei-Qi Deng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Li SD, Xiong BQ, Tang KW, Zhong LJ, Liu Y. Synthesis of Acylation Polycyclic Derivatives via Regioselective Acylation/Cyclization of 1,7-Dienes with Acyl Oxime Esters. J Org Chem 2024; 89:11233-11243. [PMID: 39052929 DOI: 10.1021/acs.joc.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A visible-light-induced radical cascade regioselective acylation/cyclization of 1,7-dienes with acyl oxime esters for the preparation of acylation polycyclic compounds via NCR-mediated C-C σ-bond cleavage is established. The transformation involves the cleavage of the C-C σ-bond in acyl oxime esters and selective addition of the electron neutral C═C bonds in 1,7-dienes for the synthesis of acyl polycyclic quinolinone derivatives, not the traditional seven-membered ring products. The strategy offers several advantages, including broad substrate tolerance, no need for bases, hyperstoichiometric radical initiators, and other auxiliaries.
Collapse
Affiliation(s)
- Shun-Dan Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
3
|
Sun H, Bin X, Zhang Q, Chen X, Tang J, Jiang G. Photochemical radical decarboxylative disulfuration of α-keto acids and oxamic acids. Chem Commun (Camb) 2024; 60:8107-8110. [PMID: 38993176 DOI: 10.1039/d4cc01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A visible-light-induced directed decarboxylative disulfuration of α-keto acids and oxamic acids was developed. As a result, a series of versatile mono acyl disulfide derivatives was synthesized under mild and sustainable reaction conditions. This protocol has a broad substrate scope, good functional-group tolerance, and excellent synthetic applications.
Collapse
Affiliation(s)
- Huangbin Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xueting Bin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Qianfang Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xiaowen Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
| | - Jie Tang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Guofang Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
4
|
Sui JL, Zhong LJ, Xiong BQ, Tang KW, Liu Y. Regioselective synthesis of N-containing polycyclic compounds via radical annulation cyclization of 1,7-dienes with aldehydes. Chem Commun (Camb) 2024; 60:4834-4837. [PMID: 38619398 DOI: 10.1039/d4cc00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A convenient method for oxidant-promoted radical cascade acylation or decarbonylative alkylation of 1,7-dienes with aldehydes has been established. This method allows for the rapid construction of N-containing polycyclic skeletons in a highly regio- and stereoselective manner. This transformation provides a simple and efficient method for the preparation of a range of tetrahydro-6H-indeno[2,1-c]quinolinone derivatives by sequential formation of three new carbon-carbon bonds. Additionally, this radical cascade cyclization can selectively convert aldehydes into aroyl/primary aliphatic acyl radicals and secondary or tertiary alkyl radicals.
Collapse
Affiliation(s)
- Jia-Li Sui
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
5
|
Ma C, Tian Y, Wang J, He X, Jiang Y, Yu B. Visible-Light-Driven Transition-Metal-Free Site-Selective Access to Isonicotinamides. Org Lett 2022; 24:8265-8270. [DOI: 10.1021/acs.orglett.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junyan Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Guo Y, Huang PF, Liu Y, He BH. Visible-light-induced acylation/cyclization of active alkenes: facile access to acylated isoquinolinones. Org Biomol Chem 2022; 20:3767-3778. [PMID: 35438126 DOI: 10.1039/d2ob00528j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen heterocycles, especially polycyclic compounds, are significant skeletons in valuable molecules. Herein, we developed an efficient and practical visible-light-induced acylation/cyclization of active alkenes with acyl oxime derivatives for constructing acylated indolo/benzimidazo-[2,1,a]isoquinolin-6(5H) ones. This reaction was compatible with various functional groups and a series of fused indole/imidazole skeletons were prepared in up to 95% yield at room temperature.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bin-Hong He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|