1
|
Wang B, Lin H, Chen Z, Zhang Y, Xue F, Xia Y, Wu S, Jin W, Liu C. Divergent Synthesis of Benzo[4,5]imidazo[2,1- b][1,3]thiazines and α-Trifluoromethyl-β-arylthio Tertiary Alcohols from 2-Mercaptobenzimidazoles and α-CF 3 Alkenes. Org Lett 2024; 26:9610-9616. [PMID: 39454077 DOI: 10.1021/acs.orglett.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
An efficient and metal-free approach for the divergent synthesis of 2-fluoro-3-aryl-4H-benzo[4,5]imidazo[2,1-b][1,3]thiazines and α-trifluoromethyl-β-arylthio tertiary alcohols from 2-mercaptoimidazoles and α-CF3 alkenes has been developed. The chemoselectivity was well controlled by base or light; a series of 2-fluoro-3-aryl-4H-benzo[4,5]imidazo[2,1-b][1,3]thiazines were afforded via base-mediated sequential SN2'- and SNV-type reactions. Meanwhile, α-trifluoromethyl-β-arylthio tertiary alcohols could be selectively achieved through visible-light-driven and electron donor-acceptor (EDA) complex-initiated radical cascade thiolation/hydroxylation in the absence of base, transition metal, and external photocatalyst.
Collapse
Affiliation(s)
- Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Analysis and Testing Center, Xinjiang University, Urumqi 830017, P. R. China
| | - Honghe Lin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
2
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
3
|
Ling J, Zhou L. Picking Two out of Three: Defluorinative Annulation of Trifluoromethyl Alkenes for the Synthesis of Monofluorinated Carbo- and Heterocycles. CHEM REC 2024; 24:e202300332. [PMID: 38251926 DOI: 10.1002/tcr.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Indexed: 01/23/2024]
Abstract
The increasing demand of organofluorine compounds in medicine, agriculture, and materials sciences makes sophisticated methods for their synthesis ever more necessary. Nowadays, not only the C-F bond formation but also the selective C-F bond cleavage of readily available poly- or perfluorine-containing compounds have become powerful tools for the effective synthesis of organofluorine compounds. The defluorinative cross-coupling of trifluoromethyl alkenes with various nucleophiles or radical precursors in an SN 2' manner is a convergent route to access gem-difluoroalkenes, which in turn react with nucleophiles or radical precursors via an SN V-type reaction. If the SN V reactions occur intramolecularly, the dual C-F bond cleavage of trifluoromethyl alkenes allows facile assembly of monofluorinated cyclic skeletons with structural complexity and diversity. In this personal account, we summarized the advances in this field on the basis of coupling and cyclization partners, including binucleophiles, alkynes, diradical precursors and radical precursors bearing a nucleophilic site. Accordingly, the annulation reactions can be achieved by base-mediated sequential SN 2'/SN V reactions, transition metal catalyzed or mediated reactions, photoredox catalysis, and the combination of photocatalytic reactions with SN V reaction. In the context of seminal works of others in this field, a concise summary of the contributions of the authors is also offered.
Collapse
Affiliation(s)
- Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Wei X, Zhang Y, Zhang JJ, Fang W, Chen Z. Solvent-Controllable C-F Bond Activation for Masked Formylation of α-Trifluoromethyl Alkenes via Organo-Photoredox Catalysis. J Org Chem 2024; 89:624-632. [PMID: 38115588 DOI: 10.1021/acs.joc.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Tian J, Zhou L. Photoredox radical/polar crossover enables C-H gem-difunctionalization of 1,3-benzodioxoles for the synthesis of monofluorocyclohexenes. Chem Sci 2023; 14:6045-6051. [PMID: 37293655 PMCID: PMC10246682 DOI: 10.1039/d3sc00912b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
A photocatalytic C-H gem-difunctionalization of 1,3-benzodioxoles with two different alkenes for the synthesis of highly functionalized monofluorocyclohexenes is described. Using 4CzIPN as the photocatalyst, the direct single electron oxidation of 1,3-benzodioxoles allows their defluorinative coupling with α-trifluoromethyl alkenes to produce gem-difluoroalkenes in a redox-neutral radical polar crossover manifold. The C-H bond of the resultant γ,γ-difluoroallylated 1,3-benzodioxoles was further functionalized via radical addition to electron-deficient alkenes using a more oxidizing iridium photocatalyst. The capture of in situ generated carbanions by an electrophilic gem-difluoromethylene carbon and consecutive β-fluoride elimination afford monofluorocyclohexenes. The synergistic combination of multiple termination pathways of carbanions enables rapid incorporation of molecular complexity via stitching simple and readily accessible starting materials together.
Collapse
Affiliation(s)
- Jiabao Tian
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| |
Collapse
|
6
|
He X, Ling J, Fang Z, Zhou L. Synthesis of 2-Fluorobenzofuran by Photocatalytic Defluorinative Coupling and 5 -endo-trig Cyclization. J Org Chem 2023. [PMID: 37126028 DOI: 10.1021/acs.joc.3c00559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An alkyl radical-triggered dual C-F bond cleavage of α-CF3-ortho-hydroxystyrenes for the synthesis of 2-fluorobenzofurans was developed. The visible-light-induced defluorinative cross-coupling reactions of α-CF3-ortho-hydroxystyrenes with a variety of carboxylic acids produced gem-difluoroalkenes, which underwent SNV-type 5-endo-trig cyclization to give 2-fluorobenzofurans. Mechanistic studies indicated that the electron transfer between phenoxyl radicals and carboxylates was the major pathway for the generation of alkyl radicals.
Collapse
Affiliation(s)
- Xiaoli He
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahao Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhixing Fang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Wang X, Rissanen K, Bolm C. A One-Pot Domino Reaction Providing Fluorinated 5,6-Dihydro-1,2-thiazine 1-Oxides from Sulfoximines and 1-Trifluoromethylstyrenes. Org Lett 2023; 25:1569-1572. [PMID: 36852945 DOI: 10.1021/acs.orglett.3c00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
N-Trifluoroacetylated (N-TFA) sulfoximines react with 1-trifluoromethylstyrenes in a one-pot domino reaction to give fluorinated 5,6-dihydro-1,2-thiazine 1-oxides in good to high yields. The process involves three sequential reaction steps that can be characterized as (1) nucleophilic allylic substitution (SN2'), (2) hydrolysis, and (3) intramolecular nucleophilic vinylic substitution (SNV). The products can further be modified by defluorination. The molecular structure of the resulting product was confirmed by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Xianliang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Zhao Y, Empel C, Liang W, Koenigs RM, Patureau FW. Gem-Difluoroallylation of Aryl Sulfonium Salts. Org Lett 2022; 24:8753-8758. [PMID: 36440861 DOI: 10.1021/acs.orglett.2c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unprecedented photochemical late-stage defluorinative gem-difluoroallylation of aryl sulfonium salts, which are formed site-selectively by direct C(sp2)─H functionalization, is herein disclosed. This method is distinguished by its mild reaction conditions, wide scope, and excellent site-selectivity. As showcase examples, a Flurbiprofen and Pyriproxyfen derivatives could be late stage C(sp2)─H gem-difluoroallylated with high yields. Experimental and computational investigations were conducted.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| |
Collapse
|
9
|
Organophotoredox-catalyzed ring-opening gem-difluoroallylation of nonstrained cycloalkanols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Li H, Mei M, Zhou L. Rh(III)-Catalyzed Defluorinative [4 + 2] Annulation of N-Sulfonylarylamides with Ethyl 2-Diazo-3,3,3-trifluoropropanoate: Synthesis of 1,3,4-Functionalized Isoquinolines. Org Lett 2022; 24:8969-8974. [DOI: 10.1021/acs.orglett.2c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Haosheng Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mingjing Mei
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
12
|
Atriardi SR, Kim J, Anita Y, Woo SK. Synthesis of
gem
‐difluoroalkenes
via
photoredox‐catalyzed
defluoroaryloxymethylation of
α‐trifluoromethyl
alkenes. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jae‐Young Kim
- Department of Chemistry University of Ulsan Ulsan Korea
| | - Yulia Anita
- Department of Chemistry University of Ulsan Ulsan Korea
- Research Center for Chemistry National Research and Innovation Agency Jakarta Pusat Indonesia
| | - Sang Kook Woo
- Department of Chemistry University of Ulsan Ulsan Korea
| |
Collapse
|
13
|
Wang B, Wang CT, Li XS, Liu XY, Liang YM. Visible-Light-Induced C-F and C-N Bond Cleavage for the Synthesis of gem-Difluoroalkenes. Org Lett 2022; 24:6566-6570. [PMID: 36053062 DOI: 10.1021/acs.orglett.2c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe a novel and efficient photoredox catalytic radical addition/defluoroalkylation coupling reaction between primary amines and trifluoromethyl-substituted alkenes. A series of gem-difluoroalkenes were synthesized via C-N bond cleavage of α-3°, α-2°, and α-1° amines under visible light irradiation. This reaction is characterized by a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Li W, Chen X, Zhou L. Photocatalytic Defluorinative Three-Component Reaction of α-Trifluoromethyl Alkenes, Alkenes, and Sodium Sulfinates: Synthesis of Monofluorocyclopentenes. Org Lett 2022; 24:5946-5950. [PMID: 35926080 DOI: 10.1021/acs.orglett.2c02202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A photocatalytic three-component reaction of α-trifluoromethyl alkenes, electron-rich alkenes, and sodium sulfinates for the synthesis of gem-difluoroalkenes in a radical/polar crossover manner was developed. Due to the strong electron-withdrawing nature of the sulfonyl group, the resultant gem-difluoroalkenes can be converted into various monofluorocyclopentenes via intramolecular base-mediated SNV reactions in one pot.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaofei Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|