1
|
Zhang Y, Deng G. Au(PPh 3)Cl/AgOTf/TsOH-Catalyzed Cascade Reaction between 1-(2-Hydroxyphenyl)-propargyl Alcohols and β-Oxoketones (Amides, Acid): Diastereoselective Construction of cis-3a,8a-Dihydrofuro[2,3- b]benzofuran Framework. J Org Chem 2024; 89:17686-17694. [PMID: 39567209 DOI: 10.1021/acs.joc.4c02430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In the Au(PPh3)Cl/AgOTf/TsOH/MeCN/N2/25 °C system, diastereoselective synthesis of cis-3a,8a-dihydrofuro[2,3-b]benzofuran derivatives with a substituent at the 8a-position has been achieved by using 1-(2-hydroxyphenyl)-3-arylprop-2-yn-1-ols and β-oxoketones (amides, acid) as starting materials. The studies revealed that the acidity of methylene in substrates plays a key role in the differential reactions. A stronger acidity of the methylene is favorable in the desired conversion. The unique role of TsOH as an additive acid in the synthesis strategy has been rationalized. 2-Oxo-phosphonate, 2-oxo-sulfonate, and 3-oxobutanoate are suitable for the conversion.
Collapse
Affiliation(s)
- Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Li MJ, Xiao HJ, Xu P, Wu LT, Chen SQ, Zhang Z, Xu H. Mechanosynthesis of Pyrrole-2-carboxylic Acids via Copper-Catalyzed Spiroannulation/Ring-Opening Aromatization of 4-Arylidene Isoxazol-5-ones with Enamino Esters. Org Lett 2024; 26:4189-4193. [PMID: 38743432 DOI: 10.1021/acs.orglett.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An efficient and practical tandem reaction of 4-arylidene isoxazol-5-ones with enamino esters catalyzed by an inexpensive copper salt has been established in a ball mill. This innovative approach yields a diverse array of structurally novel pyrrole-2-carboxylic acids, showing excellent tolerance toward different functional groups. By integrating spiroannulation and ring-opening aromatization processes, this protocol introduces a facile and cost-effective strategy for synthesizing highly functionalized pyrrole derivatives.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui-Juan Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
3
|
Suraj, Swamy KCK. [Au]-Catalyzed Cyclization of Propargyl-Tethered Ene-Amides: Substrate-Dependent Access to Tetrasubstituted Pyrroles, Aminophenols, and Dihydropyridines. J Org Chem 2024; 89:5518-5535. [PMID: 38598775 DOI: 10.1021/acs.joc.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
[Au]-catalyzed and substrate-dependent intramolecular cyclization of sulfonyl ene-amides with a pendant propargyl group afford tetrasubstituted pyrroles, o-aminophenols, or 1,6-dihydropyridine carbaldehydes. While the pyrroles and aminophenols are formed when the propargylic alkyne is terminal, dihydropyridines are formed when internal alkyne is present. Internal alkyne substrates with 2-thienyl and 3-thienyl groups give different types of dihydropyridines. The dihydropyridines so obtained can be readily converted to nicotinaldehydes with concomitant sulfonyl migration upon heating in xylene.
Collapse
Affiliation(s)
- Suraj
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
4
|
Gao Y, Jiang B, Friede NC, Hunter AC, Boucher DG, Minteer SD, Sigman MS, Reisman SE, Baran PS. Electrocatalytic Asymmetric Nozaki-Hiyama-Kishi Decarboxylative Coupling: Scope, Applications, and Mechanism. J Am Chem Soc 2024; 146:4872-4882. [PMID: 38324710 PMCID: PMC11456316 DOI: 10.1021/jacs.3c13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by employing a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in a good yield with high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric metal or organic reductants, tolerates a broad range of functional groups and is successfully applied to dramatically simplify the synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene, which acts as a key reductive mediator to mediate the electroreduction of the CrIII/chiral ligand complex.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Baiyang Jiang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Nathan C. Friede
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Arianne C. Hunter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dylan G. Boucher
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Department of Chemistry, Missouri University of Science and Technology, 400 W 11th Street, Rolla, MO 65409, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
5
|
Hashimoto N, Taguchi J, Arichi N, Inuki S, Ohno H. Gold(I)-Catalyzed Cascade Cyclization of Alkynyl Indoles for the Stereoselective Construction of the Quaternary Carbon Center of Akuammiline Alkaloids. J Org Chem 2023. [PMID: 38051730 DOI: 10.1021/acs.joc.3c02142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A gold-catalyzed cyclization reaction of alkynyl-indoles has been developed for the stereoselective construction of the quaternary carbon center of fused indolines. This reaction efficiently produces fused indolines via diastereoselective 6-endo-dig cyclization controlled by a bulky TIPS group, followed by nucleophilic attack of the carboxy group on the resulting imine. The lactone moiety of the fused indoline can be reductively cleaved to produce a tricyclic indoline, which could be useful for the synthesis of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|