1
|
Tamizharasan N, Santhoshkumar P, Devarajan N, Hallur MS, Hallur G, Suresh P. Silver-Promoted Rapid Synthesis of 3-Arylindan-1-ones: Microwave-Assisted Reductive Coupling of N-Tosylhydrazone and Boronic Acids. J Org Chem 2024. [PMID: 38768212 DOI: 10.1021/acs.joc.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An efficient and straightforward one-pot tandem synthesis of 3-arylindan-1-ones was consummated through silver nitrate-promoted C-C coupling of simple indane-1,3-dione with arylboronic acid via 1,3-indanedione monotosylhydrazone under microwave conditions. The resulting series of 3-arylindan-1-ones exhibited impressive yields, surpassing those achievable with traditional methods and requiring a shorter time frame. This innovative approach significantly accelerated the synthesis of biologically active compounds such as (+)-indatraline (Lu 19-005) and several other industrially relevant substances.
Collapse
Affiliation(s)
- Natarajan Tamizharasan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Pandeeswaran Santhoshkumar
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Mahanandeesha S Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Gurulingappa Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|
2
|
Edirin OJ, Carrick JD. Synthesis of Fused [1,2,3]-Triazoloheteroarenes via Intramolecular Azo Annulation of N-Tosylhydrazones Catalyzed by 1,8-Diaza-bicyclo[5.4.0]undec-7-ene. J Org Chem 2024; 89:7201-7209. [PMID: 38699812 DOI: 10.1021/acs.joc.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The structural diversity of triazoloheteroarenes render this moiety an attractive synthon for drug discovery, C-H functionalization, and complexant design for minor actinide separations. While contemporary work has demonstrated the capacity to leverage downstream functional group interconversion of the triazolopyridine, a broadly applicable method tolerant of diverse heteroaryl constructs and pendant functionality to obtain triazoloheteroarenes remains under reported. In this work, the serendipitous discovery of a metal, azide, and oxidant free transformation of various heteroaryl N-tosylhydrazones of carbaldehydes and ketones to the corresponding [1,2,3]-triazoloheteroarene via intramolecular azo annulation using a substoichiometric amount of 1,8-diaza-bicyclo[5.4.0]undec-7-ene is described. These results substantively improve upon previous approaches offering efficient access to the described heterocycles. Discovery of reaction conditions, method optimization, complexant, pyridine, and heteroarene substrate scope, as well as relevant scale-up reactions are reported herein.
Collapse
Affiliation(s)
- Orume J Edirin
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
3
|
Fang R, Zheng L, Chen X, Wang C, Chen Y. An FeCl 3-catalyzed three-component reaction for the synthesis of β-(1,2,3-triazolyl)-ketones using DMF as a one-carbon source. Org Biomol Chem 2024; 22:3866-3870. [PMID: 38646715 DOI: 10.1039/d4ob00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
An FeCl3-catalyzed oxidative condensation of NH-1,2,3-triazoles, aryl methyl ketones (or acetophenones) and DMF (N,N-dimethylformamide) for the synthesis of β-(1,2,3-triazolyl)-ketones was developed. DMF serves as a one-carbon source, and the resulting products display diverse reaction selectivity, highlighting the existence of distinct approaches.
Collapse
Affiliation(s)
- Ruilin Fang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuyang Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Can Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
4
|
Fletcher LS, Tedder ML, Olayiwola SO, Joyner NA, Mason MM, Oliver AG, Ensor DD, Dixon DA, Carrick JD. Next-Generation 3,3'-AlkoxyBTPs as Complexants for Minor Actinide Separation from Lanthanides: A Comprehensive Separations, Spectroscopic, and DFT Study. Inorg Chem 2024; 63:4819-4827. [PMID: 38437739 DOI: 10.1021/acs.inorgchem.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Progress toward the closure of the nuclear fuel cycle can be achieved if satisfactory separation strategies for the chemoselective speciation of the trivalent actinides from the lanthanides are realized in a nonproliferative manner. Since Kolarik's initial report on the utility of bis-1,2,4-triazinyl-2,6-pyridines (BTPs) in 1999, a perfect complexant-based, liquid-liquid separation system has yet to be realized. In this report, a comprehensive performance assessment for the separation of 241Am3+ from 154Eu3+ as a model system for spent nuclear fuel using hydrocarbon-actuated alkoxy-BTP complexants is described. These newly discovered complexants realize gains that contemporary aryl-substituted BTPs have yet to achieve, specifically: long-term stability in highly concentrated nitric acid solutions relevant to the low pH of unprocessed spent nuclear fuel, high DAm over DEu in the economical, nonpolar diluent Exxal-8, and the demonstrated capacity to complete the separation cycle with high efficiency by depositing the chelated An3+ to the aqueous layer via decomplexation of the metal-ligand complex. These soft-N-donor BTPs are hypothesized to function as bipolar complexants, effectively traversing the organic/aqueous interface for effective chelation and bound metal/ligand complex solubility. Complexant design, separation assays, spectroscopic analysis, single-crystal X-ray crystallographic data, and DFT calculations are reported.
Collapse
Affiliation(s)
- Lesta S Fletcher
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Mariah L Tedder
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Samiat O Olayiwola
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Nickolas A Joyner
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Marcos M Mason
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Allen G Oliver
- Department of Chemistry, The University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Dale D Ensor
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - David A Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
5
|
How Triazole Rings Capture Carbon Dioxide: Energy Effects and Activation Barriers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Dzeagu FO, Carrick JD. Synthetic Access to Unsymmetric, Tridentate, Pyridyl-1,3,4-oxadiazole Complexants via Intramolecular Oxidative Annulation of Arylhydrazides with Heteroaryl Carbaldehydes. J Org Chem 2023; 88:419-432. [PMID: 36575899 DOI: 10.1021/acs.joc.2c02421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last four decades, an ideal complexant for the chemoselective liquid-liquid separation of the minor actinides from the lanthanides contained within spent nuclear fuel has yet to be realized. As strategic performance objectives continue to evolve as a function of time, solubility in process-relevant diluents, fast complexation kinetics, as well as robustness to hydro- and radiolytic degradation remain at the forefront of this grand challenge. While the vast majority of soft-N-donors are symmetric in nature, this laboratory has focused on defining synthetic methods to afford unsymmetric complexants for further study to explore the impact subtle changes to the molecular topography of the complexant moiety have on performance, in addition to working toward the definition of structure-activity relationships. The development of an intramolecular iodine-mediated oxidative annulation of heteroaryl-aryl-hydrazones for the production of functionalized, tridentate, and unsymmetric 1,3,4-oxadiazole-based complexants is reported. Optimization of reaction conditions afforded numerous products in high isolated yield over two linear steps in one pot in one hour of reaction time. The cleanliness of the optimized conditions negated the need for the chromatographic purification of 32 of 44 examples attempted. Method development, optimization, substrate scope, application to related heteroarenes, and a scale-up reaction are described herein.
Collapse
Affiliation(s)
- Fortune O Dzeagu
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|