1
|
Gong D, Gao C, Zhang Y, Yao F, Li Q, Li Y, Zhao L, Kong D. Photocatalytic Hydrodichloromethylation of Unactivated Alkenes with Chloroform. Org Lett 2024; 26:11230-11235. [PMID: 39680746 DOI: 10.1021/acs.orglett.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A visible-light-induced method for the hydrodichloromethylation of unactivated alkenes using chloroform (CHCl3) was developed, employing pyridine·BH3 as the halogen atom transfer (XAT) reagent. The strategy showed a broad functional group tolerance, and 29 examples of unactivated alkenes, including complex natural products or drug derivatives, have been established with good yields. Mechanistic studies indicated that CHCl3 serves as both the source of a dichloromethyl radical and a hydrogen atom transfer (HAT) reagent, and the borane short-chain reaction process was involved in this system. This method represents a novel approach for hydrodichloromethylation of unactivated alkenes without using an additional HAT reagent.
Collapse
Affiliation(s)
- Dawei Gong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Caiyu Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yanlin Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fen Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Qixuan Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yufei Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Lina Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Degong Kong
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
2
|
Ren M, Yu S, Li X, Yuan W, Lu J, Xiong Y, Liu H, Wang J, Wei J. Synthesis of gem-Difluorohomoallyl Amines via a Transition-Metal-Free Defluorinative Alkylation of Benzyl Amines with Trifluoromethyl Alkenes. J Org Chem 2024; 89:8342-8356. [PMID: 38819657 DOI: 10.1021/acs.joc.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A mild and transition-metal-free defluorinative alkylation of benzyl amines with trifluoromethyl alkenes is reported. The features of this protocol are easy-to-obtain starting materials, a wide range of substrates, and functional group tolerance as well as high atom economy, thus offering a strategy to access a variety of gem-difluorohomoallyl amines, which are extensively distributed in pharmaceuticals and bioactive agents, with excellent chemoselectivity. The primary products can be further transformed to a diversity of 2-fluorinated pyrroline compounds.
Collapse
Affiliation(s)
- Man Ren
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefeng Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenlong Yuan
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Xiong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 265500, China
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
3
|
Liu M, Liu B, Wang Q, Feng K, Li Y, Liu L, Tong J. Metal-free synthesis of 1,3-dichloro-1,5-diarylpentan-5-ones via cascade oxidative radical addition of styrenes with CHCl 3. Org Biomol Chem 2024; 22:699-702. [PMID: 37999925 DOI: 10.1039/d3ob01403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A novel and efficient metal-free cascade oxidative radical addition of styrenes is developed for the construction of 1,3-dichloro-1,5-diarylpentan-5-ones. This protocol presents a practical one-pot procedure that delivers highly functionalized 1,3-dichloro-1,5-diarylpentan-5-ones in moderate-to-good yields with a broad substrate scope under mild conditions.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, P. R. China
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, P. R. China
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Jiaen Tong
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| |
Collapse
|
4
|
Ji CL, Zhai X, Fang QY, Zhu C, Han J, Xie J. Photoinduced activation of alkyl chlorides. Chem Soc Rev 2023; 52:6120-6138. [PMID: 37555398 DOI: 10.1039/d3cs00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In recent years, the activation of unactivated alkyl chlorides through light-induced processes has emerged as a promising field in radical chemistry, and has led to new transformations in organic synthesis. Direct utilization of alkyl chlorides as C(sp3)-hybridized electrophiles enables the facile construction of carbon-carbon and carbon-heteroatom bonds. Furthermore, recent studies in medicinal chemistry indicate that their presence is associated with high levels of success in clinical trials. This review summarizes the recent advances in the photoinduced activation of unactivated alkyl chlorides and discusses the mechanistic aspects underlying these reactions. We anticipate that this review will serve as a valuable resource for researchers in the field of unactivated chemical bond functionalization, and inspire considerable developments in organic chemistry, drug synthesis, materials science and other related disciplines.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qing-Yun Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
5
|
Lin P, Joshi C, McGinnis TM, Mallojjala SC, Sanford AB, Hirschi JS, Jarvo ER. Stereospecific Nickel-Catalyzed Cross-Electrophile Coupling Reaction of Alkyl Mesylates and Allylic Difluorides to Access Enantioenriched Vinyl Fluoride-Substituted Cyclopropanes. ACS Catal 2023; 13:4488-4499. [PMID: 37066042 PMCID: PMC10088041 DOI: 10.1021/acscatal.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Cross-electrophile coupling reactions involving direct C-O bond activation of unactivated alkyl sulfonates or C-F bond activation of allylic gem-difluorides remain challenging. Herein, we report a nickel-catalyzed cross-electrophile coupling reaction between alkyl mesylates and allylic gem-difluorides to synthesize enantioenriched vinyl fluoride-substituted cyclopropane products. These complex products are interesting building blocks with applications in medicinal chemistry. Density functional theory (DFT) calculations demonstrate that there are two competing pathways for this reaction, both of which initiate by coordination of the electron-deficient olefin to the low-valent nickel catalyst. Subsequently, the reaction can proceed by oxidative addition of the C-F bond of the allylic gem-difluoride moiety or by directed polar oxidative addition of the alkyl mesylate C-O bond.
Collapse
Affiliation(s)
- Patricia
C. Lin
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Chetan Joshi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Tristan M. McGinnis
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Amberly B. Sanford
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S. Hirschi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Elizabeth R. Jarvo
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Wu MC, Li MZ, Chen JY, Xiao JA, Xiang HY, Chen K, Yang H. Photoredox-catalysed chlorination of quinoxalin-2(1 H)-ones enabled by using CHCl 3 as a chlorine source. Chem Commun (Camb) 2022; 58:11591-11594. [PMID: 36169082 DOI: 10.1039/d2cc04520f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalysed chlorination of quinoxalin-2(1H)-ones was developed by using CHCl3 as a chlorine source, thus affording various 3-chloroquinoxalin-2(1H)-ones in moderate to high yields. This protocol is characterized by mild reaction conditions, excellent regioselectivity, and readily available chlorination agent. Considering the operational simplicity and low cost of this chlorination approach, this developed method offers an innovative pathway for rapid incorporation of chlorine functionality into heteroarenes, and will inspire broader exploitation of new chlorination strategies.
Collapse
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jia-Yi Chen
- The First High School of Changsha, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|