1
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
2
|
Guo L, Yang M, Dong B, Lewman S, Van Horn A, Jia S. Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance. JACS AU 2024; 4:3007-3017. [PMID: 39211623 PMCID: PMC11350720 DOI: 10.1021/jacsau.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
As a major family of red-shifted fluorophores that operate beyond visible light, polymethine dyes are pivotal in light-based biological techniques. However, methods for tuning this kind of fluorophores by structural modification remain restricted to bottom-up synthesis and modification using coupling or nucleophilic substitutions. In this study, we introduce a two-step, late-stage functionalization process for heptamethine dyes. This process enables the substitution of the central chlorine atom in the commonly used 4'-chloro heptamethine scaffold with various aryl groups using aryllithium reagents. This method borrows the building block and designs from the xanthene dye community and offers a mild and convenient way for the diversification of heptamethine fluorophores. Notably, this efficient conversion allows for the synthesis of heptamethine-X, the heptamethine scaffold with two ortho-substituents on the 4'-aryl modification, which brings enhanced stability and reduced aggregation to the fluorophore. We showcase the utility of this method by a facile synthesis of a fluorogenic, membrane-localizing fluorophore that outperforms its commercial counterparts with a significantly higher brightness and contrast. Overall, this method establishes the synthetic similarities between polymethine and xanthene fluorophores and provides a versatile and feasible toolbox for future optimizing heptamethine fluorophores for their biological applications.
Collapse
Affiliation(s)
- Lei Guo
- Department
of Civil Engineering, University of Arkansas,
Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Meek Yang
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Bin Dong
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Seth Lewman
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Alex Van Horn
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Shang Jia
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Gamage RS, Smith BD. Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:384-397. [PMID: 38817322 PMCID: PMC11134606 DOI: 10.1021/cbmi.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Indocyanine Blue (ICB) is the deep-red pentamethine analogue of the widely used clinical near-infrared heptamethine cyanine dye Indocyanine Green (ICG). The two fluorophores have the same number of functional groups and molecular charge and vary only by a single vinylene unit in the polymethine chain, which produces a predictable difference in spectral and physicochemical properties. We find that the two dyes can be employed as a complementary pair in diverse types of fundamental and applied fluorescence imaging experiments. A fundamental fluorescence spectroscopy study used ICB and ICG to test a recently proposed Förster Resonance Energy Transfer (FRET) mechanism for enhanced fluorescence brightness in heavy water (D2O). The results support two important corollaries of the proposal: (a) the strategy of using heavy water to increase the brightness of fluorescent dyes for microscopy or imaging is most effective when the dye emission band is above 650 nm, and (b) the magnitude of the heavy water florescence enhancement effect for near-infrared ICG is substantially diminished when the ICG surface is dehydrated due to binding by albumin protein. Two applied fluorescence imaging studies demonstrated how deep-red ICB can be combined with a near-infrared fluorophore for paired agent imaging in the same living subject. One study used dual-channel mouse imaging to visualize increased blood flow in a model of inflamed tissue, and a second mouse tumor imaging study simultaneously visualized the vasculature and cancerous tissue in separate fluorescence channels. The results suggest that ICB and ICG can be incorporated within multicolor fluorescence imaging methods for perfusion imaging and hemodynamic characterization of a wide range of diseases.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Jia S, Lin EY, Mobley EB, Lim I, Guo L, Kallepu S, Low PS, Sletten EM. Water-soluble chromenylium dyes for shortwave infrared imaging in mice. Chem 2023; 9:3648-3665. [PMID: 38283614 PMCID: PMC10817055 DOI: 10.1016/j.chempr.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In vivo imaging using shortwave infrared light (SWIR, 1000-2000 nm) benefits from deeper penetration and higher resolution compared to using visible and near-infrared wavelengths. However, the development of biocompatible SWIR contrast agents remains challenging. Despite recent advancements, small molecule SWIR fluorophores are often hindered by their significant hydrophobicity. We report a platform for generating a panel of soluble and functional dyes for SWIR imaging by late-stage functionalization of a versatile fluorophore intermediate, affording water-soluble dyes with bright SWIR fluorescence in serum. Specifically, a tetra-sulfonate derivative enables clear video-rate imaging of vasculature with only 0.05 nmol dye, and a tetra-ammonium dye shows strong cellular retention for tracking of tumor growth. Additionally, incorporation of phosphonate functionality enables imaging of bone in awake mice. This modular design provides insights for facile derivatization of existing SWIR fluorophores to introduce both solubility and bioactivity towards in vivo bioimaging.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Present address: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Eric Y. Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Emily B. Mobley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Lei Guo
- Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
- Present address: Department of Civil Engineering, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Shivakrishna Kallepu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Lead contact
| |
Collapse
|
5
|
Li DH, Gamage RS, Oliver AG, Patel NL, Muhammad Usama S, Kalen JD, Schnermann MJ, Smith BD. Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202305062. [PMID: 37163228 PMCID: PMC10330731 DOI: 10.1002/anie.202305062] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/11/2023]
Abstract
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|