1
|
Gayen P, Sar S, Ghorai P. Stereodivergent Synthesis of Spiroaminals via Chiral Bifunctional Hydrogen Bonding Organocatalysis. Angew Chem Int Ed Engl 2024; 63:e202404106. [PMID: 38563755 DOI: 10.1002/anie.202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spiroaminals represent novel structural motifs prevalent in diverse natural products and biologically active molecules. Achieving their enantioselective synthesis is a highly desirable and challenging task in synthetic endeavors due to their intricate molecular frameworks. Herein, we accomplished the first stereodivergent construction of spiroaminals using chiral bifunctional organocatalyzed intramolecular 1,2-addition followed by an oxa-Michael addition cascade in a high atom and step economical pathway. A proper modulation of the cinchona-derived squaramide catalysts efficiently provided access to all the possible stereoisomers with high yield, diastereoselectivity, and excellent enantioselectivity while displaying a broad substrate tolerance. Additionally, we validated the scalability of the reaction and demonstrated the synthesis of variable spiroaminal scaffolds, confirming the viability of our protocol.
Collapse
Affiliation(s)
- Prasenjit Gayen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
2
|
Bora SK, Biswas S, Behera BK, Saikia AK. Stereoselective synthesis of gem-dihalopiperidines via the halo-aza-Prins cyclization reaction: access to piperidin-4-ones and pyridines. Org Biomol Chem 2024; 22:3893-3903. [PMID: 38654601 DOI: 10.1039/d4ob00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An efficient methodology for the synthesis of 4,4-dihalopiperidine derivatives in excellent yields has been developed using N-(3-halobut-3-en-1-yl)-4-methylbenzenesulfonamide and an aldehyde catalyzed by In(OTf)3. The reaction involves an initial formation of a six-membered carbocation via the aza-Prins cyclization reaction followed by a nucleophilic attack by a halide ion to give 4,4-dihalopiperidine. The dihalopiperidine is converted to tetrahydropiperidinone using Ac2O/Et3N in DCM/H2O (1 : 1). It is also utilized for the synthesis of pyridine scaffolds by treatment with DBU. Furthermore, the dihalopiperidine is transformed to its enol ether derivatives using KOH in alcohol.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Xie XQ, Li X, Liu PN. Enantioselective synthesis of spiro- N, O-ketals via iridium and Brønsted acid co-catalyzed asymmetric formal [4+2] cycloaddition. Chem Commun (Camb) 2024; 60:1448-1451. [PMID: 38213273 DOI: 10.1039/d3cc05923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We present an iridium and Brønsted acid co-catalyzed enantioselective formal [4+2] cycloaddition reaction of cyclic enamides with 2-(1-hydroxyallyl)phenols. This method yields a wide range of N-unsubstituted spiro-N,O-ketals, with good efficiency (up to 94%) and excellent enantioselectivities (most >95% ee). The protocol features easy scale-up and facile product derivatization.
Collapse
Affiliation(s)
- Xiang-Qi Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Shit S, Choudhury C, Saikia AK. Nitrile stabilized synthesis of pyrrolidine and piperidine derivatives via tandem alkynyl aza-Prins-Ritter reactions. Org Biomol Chem 2024; 22:568-578. [PMID: 38117142 DOI: 10.1039/d3ob01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An efficient methodology for the synthesis of N-(pyrrolidine-3-ylidenemethyl)acetamides mediated by triflic acid in good yields with separable Z/E isomers within a short reaction time has been demonstrated. The reaction involves the initial formation of the pyrrolidin-3-ylidenemethylium carbocation via the Prins cyclization reaction followed by the Ritter reaction to produce N-(pyrrolidine-3-ylidenemethyl)acetamides. This methodology is also used for the synthesis of their piperidine derivatives.
Collapse
Affiliation(s)
- Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Chinmayee Choudhury
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
5
|
Khan ZA, Singh VK. Synthesis of Spiroisoindolinones via Ru(II)-Catalyzed Spiroannulation of N-Acyl Ketimines with Aryl Isocyanates/Isothiocyanates through Aromatic C-H Bond Activation. J Org Chem 2023. [PMID: 38053308 DOI: 10.1021/acs.joc.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein, we disclose the first report on Ru(II)-catalyzed amidation/thioamidation of 3-hydroxy-3-arylisoindolinones with isocyanates/isothiocyanates, respectively. The reaction furnishes spiroisoindolinones via sequential C-H functionalization of ortho C-H bond followed by intramolecular cyclization in moderate to high yields (up to 94%). Moreover, the developed strategy is highly atom-economical and site-selective and shows diverse substrate generality. Also, synthesized spiroisoindolinones undergo several chemical transformations.
Collapse
Affiliation(s)
- Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
6
|
Biswas S, Shit S, Behera BK, Sahu AK, Saikia AK. Leveraging cascade alkynyl Prins cyclization towards the stereoselective synthesis of spiro-furan quinazolinone scaffolds. Chem Commun (Camb) 2023; 59:14301-14304. [PMID: 37965888 DOI: 10.1039/d3cc04464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A TfOH-promoted, metal-free protocol has been unveiled for the synthesis of spiro-furan quinazolinones employing alkynol urea derivatives utilizing alkynyl Prins cyclization reaction. This methodology produces highly functionalized spiro-heterocycles in excellent yields with exclusive E-selectivity under ambient conditions. Furthermore, late-stage modifications incorporate bromide and acetyl functionalities into the synthesized spiro-heterocycles.
Collapse
Affiliation(s)
- Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
7
|
Arandhara PJ, Behera BK, Biswas S, Saikia AK. Synthesis of 1,2,3-triazole-fused N-heterocycles from N-alkynyl hydroxyisoindolinones and sodium azide via the Huisgen reaction. Org Biomol Chem 2023; 21:8772-8781. [PMID: 37877886 DOI: 10.1039/d3ob01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
An efficient methodology for the synthesis of dihydro[1,2,3]triazolo-pyrimidoisoindolones and dihydro[1,2,3]triazolo-diazepinoisoindolones has been developed using the Huisgen reaction from sodium azide and alkyne substituted amido alcohols in moderate to good yields. The reaction involves the in situ generation of the N-acyliminium ion intermediate, which undergoes a nucleophilic attack by the azide ion, followed by a [3 + 2]-intramolecular azide-alkyne cycloaddition reaction. Importantly, the reaction proceeds without the involvement of any transition metal catalyst. This methodology can be further utilized for the synthesis of dihydro[1,2,3]triazolo-pyrimidoisoindolthiones via thionation of amides.
Collapse
Affiliation(s)
- Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
8
|
Chen ME, Gan ZY, Hu YH, Zhang FM. Tandem Oxidative Ritter Reaction/Hydration/Aldol Condensation of α-Arylketones with Propiolonitriles for the Construction of 3-Acyl-3-pyrrolin-2-ones. J Org Chem 2023; 88:3954-3964. [PMID: 36881939 DOI: 10.1021/acs.joc.2c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A novel tandem oxidative Ritter reaction/hydration/aldol condensation of α-arylketones with substituted propiolonitriles has been developed. This protocol conveniently affords a wide range of functionalized 3-acyl-3-pyrrolin-2-ones through the efficient construction of four chemical bonds, a C-N bond, a C═C bond, and two C═O bonds, and the formation of one ring bearing an aza-quaternary center, which is ascribed to the strategical introduction of functionalized nitriles to this transformation. A reaction mechanism was proposed based on some control experiments.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhang-Yan Gan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Bora SK, Shit S, Sahu AK, Saikia AK. Diastereoselective Synthesis of 2,6-Disubstituted Tetrahydropyranones via Prins Cyclization of 3-Bromobut-3-en-1-ols and Aldehydes. J Org Chem 2023. [PMID: 36811615 DOI: 10.1021/acs.joc.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tetrahydropyranones are synthesized from 3-bromobut-3-en-1-ols and aldehydes in good yields with excellent diastereoselectivity at -35 °C. The reaction involves an initial formation of a most stable six-membered chairlike tetrahydropyranyl carbocation followed by nucleophilic attack of the hydroxyl group and subsequent elimination of HBr to give tetrahydropyranone. The carbonyl moiety of the tetrahydropyranone is converted to enol ether and esters using Wittig reaction. It is also transformed into 4-hydroxy-2,6-disubstituted tetrahydropyran with 2,4- and 4,6-cis configuration by lithium aluminum hydride in up to 96% diastereoselectivity. Furthermore, the methodology is extended toward the synthesis of novel anticancer aminoguanidine compounds.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|