1
|
Sun G, Liu L, Zhang J, Zhang Z, She M, Chen J, Liu P, Zhang S, Li J. Modular Assembly of Chalcones, N-Tosylhydrazones, and KSCN/KSeCN for the Synthesis of Trisubstituted Imidazo[2,1- b][1,3,4]thiadiazoles/selenadiazoles. Org Lett 2025. [PMID: 39899432 DOI: 10.1021/acs.orglett.4c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
A modular protocol that achieved the efficient synthesis of imidazo[2,1-b][1,3,4]thiadiazoles/selenadiazoles via using easily available N-tosylhydrazones, chalcone derivatives, and KSCN/KSeCN is proposed. The method overcomes the elongated synthesis steps and prefunctionalized synthons of previous methods. It solves the problem of traditional preparation methods, which makes it difficult to synthesize thickened selenium-containing heterocyclic molecules, further expanding the number of members in its family. The fluorescence of these compounds also reveals the potential values of the scaffolds we synthesized.
Collapse
Affiliation(s)
- Guojin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Lang Liu
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, Shaanxi, P. R. China
| | - Jun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Zhe Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
2
|
Pereira F, Bedda L, Tammam MA, Alabdullah AK, Arafa R, El-Demerdash A. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). J Biomol Struct Dyn 2024; 42:3983-4001. [PMID: 37232419 DOI: 10.1080/07391102.2023.2217513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The new coronavirus variant (SARS-CoV-2) and Zika virus are two world-wide health pandemics. Along history, natural products-based drugs have always crucially recognized as a main source of valuable medications. Considering the SARS-CoV-2 and Zika main proteases (Mpro) as the re-production key element of the viral cycle and its main target, herein we report an intensive computer-aided virtual screening for a focused list of 39 marine lamellarins pyrrole alkaloids, against SARS-CoV-2 and Zika main proteases (Mpro) using a set of combined modern computational methodologies including molecular docking (MDock), molecule dynamic simulations (MDS) and structure-activity relationships (SARs) as well. Indeed, the molecular docking studies had revealed four promising marine alkaloids including [lamellarin H (14)/K (17)] and [lamellarin S (26)/Z (39)], according to their notable ligand-protein energy scores and relevant binding affinities with the SARS-CoV-2 and Zika (Mpro) pocket residues, respectively. Consequentially, these four chemical hits were further examined thermodynamically though investigating their MD simulations at 100 ns, where they showed prominent stability within the accommodated (Mpro) pockets. Moreover, in-deep SARs studies suggested the crucial roles of the rigid fused polycyclic ring system, particularly aromatic A- and F- rings, position of the phenolic -OH and δ-lactone functionalities as essential structural and pharmacophoric features. Finally, these four promising lamellarins alkaloids were investigated for their in-silico ADME using the SWISS ADME platform, where they displayed appropriated drug-likeness properties. Such motivating outcomes are greatly recommending further in vitro/vivo examinations regarding those lamellarins pyrrole alkaloids (LPAs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Loay Bedda
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Reem Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Amr El-Demerdash
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
- Department of Biochemistry and Metabolism, the John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
3
|
Wei M, Chen J, Song Y, Monserrat JP, Zhang Y, Shen L. Progress on synthesis and structure-activity relationships of lamellarins over the past decade. Eur J Med Chem 2024; 269:116294. [PMID: 38508119 DOI: 10.1016/j.ejmech.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.
Collapse
Affiliation(s)
- Mingze Wei
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Jing Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Yuliang Song
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | | | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Li Shen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China.
| |
Collapse
|
4
|
Liu X, Zhu F, Ajitha MJ, Zhang Y, Huang KW, Li D, Wang D. Organocatalyzed Enantioselective [2 + 2] Cycloaddition of C, N-Cyclic Ketimines and Allenoates. Org Lett 2024; 26:225-230. [PMID: 38147459 DOI: 10.1021/acs.orglett.3c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We report a novel enantioselective and regioselective [2 + 2] cycloaddition of allenoate and C,N-cyclic ketimine catalyzed by a quinidine derivative. The methodology enables the synthesis of fused tricyclic azetidines with a quaternary stereogenic center exhibiting high enantioselectivities. The broad range of substrates demonstrates the generality of the protocol, and the resulting functional products can be easily converted to a variety of valuable synthons. To elucidate the plausible reaction mechanism and how the catalyst affects absolute stereocontrol over the products, we conducted the corresponding density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266100, China
| | - Fangfang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266100, China
| | - Manjaly J Ajitha
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yunfeng Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266100, China
| | - Kuo-Wei Huang
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Wang D, Liu X, Ajitha MJ, Liu Z, Hu Y, Huang KW. Stereospecific [3+2] Cycloaddition of Chiral Arylallenes with C,N-Cyclic Azomethine Imines. Org Lett 2023; 25:3249-3253. [PMID: 37114764 DOI: 10.1021/acs.orglett.3c00984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A novel α,β-regioselective [3+2] cycloaddition reaction of arylallene with C,N-cyclic azomethine imine is reported. The axial-to-central chirality transfer phenomenon has been disclosed with chiral allenes in the reaction. The wide substrate scope, including different functional groups and natural products, reveals the generality of the methodology. Both experiments and density functional theory calculations have been used to elucidate a plausible mechanism.
Collapse
Affiliation(s)
- De Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Manjaly J Ajitha
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhixin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Yongyi Hu
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore 138634
| |
Collapse
|
6
|
Liu L, Wen C, Sun G, Li Y, Zhang J, Zhang Z, Wang Z, She M, Liu P, Zhang S, Li J. Multisite-Sequential Cyclization To Construct 1,2,4-Triazole-Based N-Fused Heterocyclics. Org Lett 2023; 25:1530-1535. [PMID: 36852941 DOI: 10.1021/acs.orglett.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A feasible protocol that uses atomic groups (KSCN, KSeCN, and NH2CN), o-bromobenzoyl hydrazides, and formyls as reaction factors to synthesize N-fused 1,2,4-triazole with benzothiazides, benzoselenazinones, and quinazolinones was proposed. The method overcomes the lengthy multistep synthesis, narrow substrate scope, and toxicity challenge induced by the use or production of hazardous substances. It also enables the development of fused-heterocyclic selenium and quinazolinone derivatives. Their fluorescent performance further demonstrates the practicability of this methodology.
Collapse
Affiliation(s)
- Lang Liu
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Changting Wen
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Guojin Sun
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Yao Li
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, Ningxia University Yinchuan, Ningxia, 750021, P. R. China
| | - Zhe Zhang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Zesi Wang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Faculty of Life and Health Science, Northwest University, Xi'an, Shaanxi Province 710069, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Shengyong Zhang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
7
|
Yagci BB, Donmez SE, Şahin O, Türkmen YE. Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles. Beilstein J Org Chem 2023; 19:66-77. [PMID: 36741815 PMCID: PMC9874235 DOI: 10.3762/bjoc.19.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
We have developed a catalytic aza-Nazarov reaction of N-acyliminium salts generated in situ from the reaction of a variety of cyclic and acyclic imines with α,β-unsaturated acyl chlorides to afford substituted α-methylene-γ-lactam heterocycles. The reactions proceed effectively in the presence of catalytic (20 mol %) amounts of AgOTf as an anion exchange agent or hydrogen-bond donors such as squaramides and thioureas as anion-binding organocatalysts. The aza-Nazarov cyclization of 3,4-dihydroisoquinolines with α,β-unsaturated acyl chlorides gives tricyclic lactam products 7 in up to 79% yield with full diastereocontrol (dr = >99:1). The use of acyclic imines in a similar catalytic aza-Nazarov reaction with 20 mol % of AgOTf results in the formation of α-methylene-γ-lactam heterocycles 19 in up to 76% yield and with good to high diastereoselectivities (4.3:1 to 16:1). We have demonstrated the scalability of the reaction with a gram-scale example. The relative stereochemistry of the α-methylene-γ-lactam products 19 has been determined via the single-crystal X-ray analysis of lactam 19l. In order to shed light on the details of the reaction mechanism, we have performed carefully designed mechanistic studies which consist of experiments on the effect of β-silicon stabilization, the alkene geometry of the α,β-unsaturated acyl chloride reactants, and adventitious water on the success of the catalytic aza-Nazarov reaction.
Collapse
Affiliation(s)
- Bilge Banu Yagci
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Selin Ezgi Donmez
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Turkey
| | - Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
- UNAM – National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Fernández-Peña L, Matos MJ, López E. Recent Advances in Biologically Active Coumarins from Marine Sources: Synthesis and Evaluation. Mar Drugs 2022; 21:37. [PMID: 36662210 PMCID: PMC9864071 DOI: 10.3390/md21010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Coumarin and its derivatives have significantly attracted the attention of medicinal chemists and chemical biologists due to their huge range of biological, and in particular, pharmacological properties. Interesting families of coumarins have been found from marine sources, which has accelerated the drug discovery process by inspiring innovation or even by the identification of analogues with remarkable biological properties. The purpose of this review is to showcase the most interesting marine-derived coumarins from a medicinal chemistry point of view, as well as the novel and useful synthetic routes described to date to achieve these chemical structures. The references that compose this overview were collected from PubMed, Mendeley and SciFinder.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Enol López
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| |
Collapse
|
9
|
Chen T, Gong F, Nagaraju S, Liu J, Yang S, Chen X, Fang X. Oxa-Nazarov Cyclization-Michael Addition Sequence for the Rapid Construction of Dihydrofuranones. Org Lett 2022; 24:8837-8842. [PMID: 36417711 DOI: 10.1021/acs.orglett.2c03601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Nazarov cyclization has been established as a powerful tool in constructing cyclopentenone skeletons. In sharp contrast, oxa-Nazarov cyclization that affords dihydrofuranones, a new type of product, has been less explored. In this work, we report the I2-catalyzed oxa-Nazarov cyclization-Michael addition cascade between vinyl α-diketones and enones. The protocol allows access to a range of functionalized dihydrofuranones with good to high yields, and diverse further transformations on the products have been achieved. Furthermore, the mechanistic studies reveal that the 1,2-hydride shift occurs simultaneously during the dihydrofuranone formation.
Collapse
Affiliation(s)
- Ting Chen
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fan Gong
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Sakkani Nagaraju
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xinqiang Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|