1
|
Zeng JC, Zhao K, Zhang PF, Zhuang FD, Ding L, Yao ZF, Wang JY, Pei J. Assessing the Role of BN-Embedding Position in B 2N 2-Perylenes. Chemistry 2024; 30:e202304372. [PMID: 38191767 DOI: 10.1002/chem.202304372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Incorporating heteroatoms can effectively modulate the molecular optoelectronic properties. However, the fundamental understanding of BN doping effects in BN-embedded polycyclic aromatic hydrocarbons (PAHs) is underexplored, lacking rational guidelines to modulate the electronic structures through BN units for advanced materials. Herein, a concise synthesis of novel B2N2-perylenes with BN doped at the bay area is achieved to systematically explore the doping effect of BN position on the photophysical properties of PAHs. The shift of BN position in B2N2-perylenes alters the π electron conjugation, aromaticity and molecular rigidness significantly, achieving substantially higher electron transition abilities than those with BN doped in the nodal plane. It is further clarified that BN position dominates the photophysical properties over BN orientation. The revealed guideline here may apply generally to novel BN-PAHs, and aid the advancement of BN-PAHs with highly-emissive performance.
Collapse
Affiliation(s)
- Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kexiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Feiyue G, Chuncai Z, Zihao W, Weiwei Z, Xin W, Guijian L. Solid-oil separation of coal tar residue to reduce polycyclic aromatic hydrocarbons via microwave-assisted extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117679. [PMID: 36934504 DOI: 10.1016/j.jenvman.2023.117679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Coal tar residue (CTR) is acknowledged as hazardous industrial waste with high contents of carbon and toxic polycyclic aromatic hydrocarbons (PAHs). Microwave-assisted extraction for separating tar and residue in CTR was investigated to reduce the content of PAHs. The key operating factors such as solvent type, solvent addition amount, radiation temperature, and radiation time in the extraction process were evaluated. Results showed that extreme extraction performance in the solvent with cyclic structure was attained, and an enhancement in extraction efficiency was achieved in elevated solvent addition amount, radiation temperature, or radiation time in a certain range. The optimized conditions were determined as benzene was chosen as extractant, solvent-solid ratio of 5:1 mL/g, radiation temperature of 75 °C, and radiation time of 10 min. Relative extraction efficiency of CTR and reduction efficiency of 16 priority control PAHs were 28.70% and 92.82%, respectively. According to the characterizations of extracted residue (MCTR) and tar (MCT) under optimum experimental conditions, it is possible to convert them into value-added products (carbon materials, solid fuels, or chemicals). Solid-oil separation via microwave-assisted extraction is a safe and high-valued utilization approach for CTR.
Collapse
Affiliation(s)
- Gao Feiyue
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Zhou Chuncai
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China.
| | - Wang Zihao
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Zhu Weiwei
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Wang Xin
- Department of Ecology and Environment of Anhui Province, No 1766, Road Huaining, Hefei 230071, China
| | - Liu Guijian
- School of Earth and Space Sciences, University of Science and Technology of China, No. 96, Road Jinzhai, Hefei 230026, China
| |
Collapse
|