1
|
Gao Y, Xing J, Huo Y, Chen Q, Li X, Hashmi ASK, Zeng Z. Nickel-Catalyzed Three-Component Carboamination/Cyclization of Alkynes To Access 2,3-Disubstituted Quinolines. Org Lett 2025. [PMID: 39848257 DOI: 10.1021/acs.orglett.4c04753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Presented herein is a nickel-catalyzed chemo- and regioselective three-component tandem carboamination and cyclization of terminal alkynes with organoboronic acids and anthranils for facile and modular access to 2,3-substituted quinolines. In this process, anthranil has dual roles: serving as an electrophilic aminating reagent and a redox buffer to suppress the generation of an off-cycle Ni(0) complex. Moreover, the anionic acetylacetonate (acac) ligand was found to be vital to ensure a productive Ni(I)-Ni(III)-Ni(I) catalytic cycle.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, Guangdong 515200, China
| | - Jiale Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
2
|
Xie Z, Cui Y, Xing J, Gao Y, Huo Y, Li X, Chen Q. Nickel-Catalyzed, Aminoquinoline-Directed Chemo- and Regioselective Carboamination of Unactivated Olefins with Organoboronic Acids and Anthranils. J Org Chem 2024; 89:14151-14163. [PMID: 39298536 DOI: 10.1021/acs.joc.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A nickel-catalyzed three-component carboamination of unactivated alkenes with organoboronic acids and anthranils has been achieved for the expedient synthesis of δ-aryl and γ-amino acid derivatives. The 8-aminoquinoline (AQ) directing group is crucial for the success of the reaction, and anthranil serves as an arylnitrene precursor in this conversion. This method features mild reaction conditions, good chemo- and regioselectivity, and a broad substrate scope with good functional group tolerance.
Collapse
Affiliation(s)
- Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiale Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Li J, Wang Y, Zhang R, Li J, Dong D. Triflic Acid-Promoted 1,2-Amino Migration Reactions in α-Arylaminoacrylamides: Access to Substituted β-Aminoamides. J Org Chem 2024; 89:8861-8870. [PMID: 38845104 DOI: 10.1021/acs.joc.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A straightforward synthesis of substituted β-aminoamides from α-arylamino-β-hydroxyacrylamides, α-arylamino-β-oxoamides, or their tautomeric mixture has been described. The (E)-enol triflate intermediates are readily generated in situ from these substrates in the presence of triflic anhydride (Tf2O) and triethylamine (Et3N) in a chemoselective manner and undergo triflic acid (TfOH)-promoted cyclization and ring-opening reactions with alcohols to deliver the desired products. The one-pot two-step synthetic protocol features the use of readily available starting materials, mild reaction conditions, high chemoselectivity, operational simplicity, and a wide range of synthetic potential of the products.
Collapse
Affiliation(s)
- Jiawang Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiacheng Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Zhou HY, Dong L. Synthesis of acridones via Ir(III)-catalyzed amination annulation of oxazoles with anthranils. Org Biomol Chem 2024; 22:4036-4040. [PMID: 38698770 DOI: 10.1039/d4ob00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An unprecedented Ir(III)-catalyzed C-H activation/amination/annulation of 2-phenyloxazoles with anthranils for the highly selective preparation of acridone derivatives in one-pot under controlled conditions is reported. This protocol is characterized by atom economy and high regioselectivity. A wide range of anthranils with 2-phenyloxazoles were well tolerated and afforded the desired products in moderate to good yields, in which the anthranil serves as a convenient amination reagent.
Collapse
Affiliation(s)
- Han-Yi Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Lee C, Kang HJ, Hong S. NiH-catalyzed C-N bond formation: insights and advancements in hydroamination of unsaturated hydrocarbons. Chem Sci 2024; 15:442-457. [PMID: 38179526 PMCID: PMC10763554 DOI: 10.1039/d3sc05589b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The formation of C-N bonds is a fundamental aspect of organic synthesis, and hydroamination has emerged as a pivotal strategy for the synthesis of essential amine derivatives. In recent years, there has been a surge of interest in metal hydride-catalyzed hydroamination reactions of common alkenes and alkynes. This method avoids the need for stoichiometric organometallic reagents and overcomes problems associated with specific organometallic compounds that may impact functional group compatibility. Notably, recent developments have brought to the forefront olefinic hydroamination and hydroamidation reactions facilitated by nickel hydride (NiH) catalysis. The inclusion of suitable chiral ligands has paved the way for the realization of asymmetric hydroamination reactions in the realm of olefins. This review aims to provide an in-depth exploration of the latest achievements in C-N bond formation through intermolecular hydroamination catalyzed by nickel hydrides. Leveraging this innovative approach, a diverse range of alkene and alkyne substrates can be efficiently transformed into value-added compounds enriched with C-N bonds. The intricacies of C-N bond formation are succinctly elucidated, offering a concise overview of the underlying reaction mechanisms. It is our aspiration that this comprehensive review will stimulate further progress in NiH-catalytic techniques, fine-tune reaction systems, drive innovation in catalyst design, and foster a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Hyung-Joon Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
6
|
Yang H, Ye Y. Recent Progress in NiH-Catalyzed Linear or Branch Hydrofunctionalization of Terminal or Internal Alkenes. Top Curr Chem (Cham) 2023; 381:23. [PMID: 37474812 DOI: 10.1007/s41061-023-00433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
The construction of C-C and C-X (X = N, O, Si, etc.) bonds is an important field in organic synthesis and methodology. In recent decades, studies on transition metal-catalyzed functionalization of alkenes have been on the rise. The individual properties of different transition metals determine the type of reaction that can be applied. Generally, post-transition metals with a large number of electrons in the d-orbit such as Mn, Fe, Co, Ni, Cu and Zn, etc., can be applied to more reaction types than pre-transition metals with a small number of electrons (e.g., Ti, Zr, etc.). Alkyl nickel intermediates formed by oxidative addition could couple with various of nucleophiles or electrophiles. Moreover, nickel has several oxidation valence states, which can flexibly realize a variety of catalytic cycles. These characteristics make nickel favored by researchers in the field of functionalization of alkenes, especially for the hydrofunctionalization of alkenes. Both terminal and internal alkenes could be converted, and the strategies of synthesizing linear and branched compounds have been expanded. Moreover, the guiding groups in alkenes played an almost decisive role in the regional selectivity, and the ligand or temperature also had regulating effects. Herein, we will give a comprehensive and timely overview of the works about the Ni-catalyzed hydrofunctionalization of alkenes and some insights on regional selectivity.
Collapse
Affiliation(s)
- Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Zhao Y, Gao Y, Xie Z, Liao S, Huang J, Huo Y, Chen Q, Li X, Hu XQ. Tf 2O-Promoted Chemoselective C3 Functionalization of Anthranils with Phenols and Thiophenols. J Org Chem 2023. [PMID: 37400425 DOI: 10.1021/acs.joc.3c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Different chemoselectivities of phenols and thiophenols were observed in a Tf2O-promoted C3 functionalization of simple anthranils. The reaction of phenols and anthranils gives 3-aryl anthranils via a C-C bond formation, whereas thiophenols afford 3-thio anthranils through a C-S bond formation. Both reactions have a broad substrate scope and tolerate a wide range of functional groups, affording the corresponding products with specific chemoselectivity.
Collapse
Affiliation(s)
- Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuwei Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiebin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
8
|
Zheng YL, Liang DY, Ma HB, Meng FC, Wang T. Regio- and chemoselective hydroamination of unactivated alkenes with anthranils via NiH-catalysis. Chem Commun (Camb) 2023; 59:2751-2754. [PMID: 36779354 DOI: 10.1039/d2cc07052a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A NiH-catalyzed polarity-reversed hydroamination of β,γ-, γ,δ- and δ,ε-unsaturated alkenes with electrophilic anthranils was developed. This reaction proceeds in a highly regio- and chemoselective manner to afford γ, δ and ε-arylamines bearing a carbonyl or alcohol functionality with 100% atom efficiency. Preliminary mechanistic studies indicate that the chemoselectivity is controlled by the base and the alcohol product is derived from the base-catalyzed hydrosilylation of the CO bond.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Di-Yu Liang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Hong-Bin Ma
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Fan-Cheng Meng
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| |
Collapse
|
9
|
Bogdos MK, Müller P, Morandi B. Structural Evidence for Aromatic Heterocycle N–O Bond Activation via Oxidative Addition. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael K. Bogdos
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|