1
|
Ishii A, Hata T, Shigeta M, Urabe H. Nucleophilic Addition of Amides to Haloalkynes: Synthesis of ( Z)-β-Halovinyl Amides as Dual Precursors of Alkylidene Carbenes and Allyl Halides. Org Lett 2024; 26:2999-3003. [PMID: 38578270 DOI: 10.1021/acs.orglett.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Toward a regioselective method for the synthesis of β-halovinyl amides, we developed a transition-metal-free nucleophilic addition reaction of amides to haloalkynes. The regioselective nucleophilic addition was achieved under solvent-free conditions using phosphonates to protonate the intermediate alkylidene carbenoids, thus suppressing their decomposition. Furthermore, we demonstrate that β-halovinyl amides can serve as dual precursors of allyl halides and alkylidene carbenes to obtain functionalized indoles and pyrrolidones.
Collapse
Affiliation(s)
- Azusa Ishii
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Takeshi Hata
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Masayuki Shigeta
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Hirokazu Urabe
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Jayaram A, Seenivasan VT, Govindan K, Liu YM, Chen NQ, Yeh TW, Venkatachalam G, Li CH, Leung TF, Lin WY. Base-promoted triple cleavage of CCl 2Br: a direct one-pot synthesis of unsymmetrical oxalamide derivatives. Chem Commun (Camb) 2024; 60:3079-3082. [PMID: 38406884 DOI: 10.1039/d4cc00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We present a novel, eco-friendly and one-pot approach for synthesizing unsymmetrical oxalamides with the aid of dichloroacetamide and amine/amides in the presence of CBr4 in a basic medium. The use of water as a potent supplement for the oxygen atom source and the detailed mechanism have been disclosed. Moreover, the protocol involves triple cleavage of CCl2Br and the formation of new C-O/C-N bonds, with the advantage of achieving selective bromination using CBr4 with good to excellent yield under mild conditions. The method also demonstrates promise for industrial use, as proven by its effective implementation in gram-scale synthesis conducted in a batch process, along with its utilization in a continuous-flow system.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | | | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Yu-Ming Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Ting-Wei Yeh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Gokulakannan Venkatachalam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Tsz-Fai Leung
- Department of Chemistry, National Sun Yat-sen University, Taiwan, Republic of China
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Taiwan, Republic of China
| |
Collapse
|
3
|
Wu H, Chen K, Liu Y, Wan JP. Unlock the C-N Bond Amidation of Enaminones: Metal-Free Synthesis of Enamides by Water-Assisted Transamidation. J Org Chem 2024; 89:216-223. [PMID: 38109677 DOI: 10.1021/acs.joc.3c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The C-N bond transamidation of primary amides with N,N-dimethyl enaminones has been efficiently realized by heating in the presence of trifluoromethanesulfonic acid (TfOH). The method enables the practical synthesis of valuable enamides without the use of any metal reagent. In addition, this transamidation protocol can also be expanded to the reactions of sulfonamides, and the late-stage functionalization on sulfonamide drugs such as Celecoxib and Valdecoxib has been verified. Moreover, the participation of water in assisting the transamidation process has been identified by the isotope labeling experiments using D2O, disclosing a new possibility in designing catalytic tactic to other transamidation reactions.
Collapse
Affiliation(s)
- Haozhi Wu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kang Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Zou Q, Zhang W, Wang H, Yin G, He Y, Li F. Anion-Driven C-F Bond Activation of Trifluoromethyl N-Aryl Hydrazones: Application to the Synthesis of 1,3,4-Oxadiazoles. J Org Chem 2023; 88:15507-15515. [PMID: 37862576 DOI: 10.1021/acs.joc.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The CF3 group attached to N-aryl hydrazone could be activated upon treatment with a suitable base, thus serving as an excellent C1 unit for the assembly of a series of 1,3,4-oxadiazoles by reaction with hydrazides. The transformation is proposed to proceed via the intermediate formation of a gem-difluorinated azoalkene. Furthermore, this reaction features simple conditions and a broad substrate scope with respect to both trifluoromethyl N-aryl hydrazones and hydrazides.
Collapse
Affiliation(s)
- Qijie Zou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Wei Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Haoyue Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|