Xiang X, Wei W, Zhao ZX, Zhang HX. Theoretical Investigations on the Rh(III)-Catalyzed Oxidative C-H Activation/Annulation of Salicylaldehydes with Masked Enynes: Mechanism Insights and Regioselectivity Origins.
ACS OMEGA 2023;
8:45109-45114. [PMID:
38046303 PMCID:
PMC10688203 DOI:
10.1021/acsomega.3c07381]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The mechanism underlying the rhodium(III)-catalyzed reaction of the C-H alkenylation/annulation reaction of salicylaldehydes with enynes has been thoroughly investigated using DFT calculations. Based on mechanistic studies, our focus primarily lies on the regioselectivity of asymmetric alkynes inserting into the Rh-C bond and the involvement of the auxiliary group OAc- in these reactions. Our theoretical study uncovers that, with acetate assistance, a stepwise SN2' cyclization, 1,3-Rh migration, β-H elimination, and reductive elimination process occur. Furthermore, we also explore the role of substitution at Cα (CH3 vs H) in the reaction. As demonstrated in this work, these findings are applicable to other related reactions.
Collapse