1
|
Wanderley TS, Buscemi R, Conboy Ó, Knight B, Crisenza GEM. General Alkene 1,2- syn-Cyano-Hydroxylation Procedure Via Electrochemical Activation of Isoxazoline Cycloadducts. J Am Chem Soc 2024; 146:32848-32858. [PMID: 39537202 PMCID: PMC11613428 DOI: 10.1021/jacs.4c13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp3)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality. 1,3-Dipolar cycloadditions are routinely used to form heterocycles from alkenes with high levels of regioselectivity and stereospecificity. Nevertheless, methods for the ring-opening of cycloadducts to reveal synthetically useful functionalities require the use of hazardous reagents or forcing reaction conditions; thus limiting their synthetic applications. Herein, we describe the implementation of a practical, general and selective electrosynthetic strategy for olefin 1,2-syn-difunctionalization, which hinges on the design of novel reagents-consisting of a nitrile oxide 1,3-dipole precursor, equipped with a sulfonyl-handle. These can selectively difunctionalize alkenes via "click" 1,3-dipolar cycloadditions, and then facilitate the telescoped electrochemical single electron transfer activation of the ensuing isoxazoline intermediate. Cathodic reduction of the cycloadduct triggers a radical fragmentation pathway delivering sought-after stereodefined 1,2-syn-hydroxy nitrile derivatives. Our telescoped electrochemical procedure tolerates a wide range of functionalities, and─crucially─enables the difunctionalization of both electron-rich, electron-poor and unactivated olefins, with diverse degree of substitution; thus providing a robust, general and selective metal-free alternative to current alkene difunctionalization strategies. Capitalizing on these features, we employed our electrosynthetic method to enable the late-stage syn-hydroxy-cyanation of natural products and bioactive compounds, and streamline the de novo synthesis of pharmaceutical agents.
Collapse
Affiliation(s)
- Taciano
A. S. Wanderley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Roberto Buscemi
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Órla Conboy
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin Knight
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Giacomo E. M. Crisenza
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Silalai P, Saeeng R. Visible-light-induced photocatalytic four-component fluoroalkylation-dithiocarbamylation via difunctionalization of styrenes. Org Biomol Chem 2024; 22:8437-8452. [PMID: 39140347 DOI: 10.1039/d4ob00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein we demonstrate that a visible-light-induced photocatalytic four-component fluoroalkylation-dithiocarbamylation is a unified method for the fluoroalkylation of diverse activated fluoroalkyl halides, including monofluoroalkyl bromides, difluoroalkyl bromides, trifluoromethyl iodide, and perfluoroalkyl iodides. The synthetic value of this method has been demonstrated by the transformations of various substrates containing drug/natural product skeletons, gram scale reactions, and further derivatizations of the fluorodithiocarbamate products. This work features an atom economical protocol that is simple to operate, does not require any additives or strong bases, and can be carried out under mild conditions.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
3
|
Xie ZZ, Huang C, Gao J, Deng KY, Ye YQ, Xiang HY, Chen K, Yang H. Photoredox-Catalyzed Phosphine-Mediated Successive Deoxygenation of Sulfonyl Oxime Salts Enables Anti-Markovnikov Hydrothiolation of Alkenes. Org Lett 2024; 26:8100-8105. [PMID: 39287105 DOI: 10.1021/acs.orglett.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stable and easy-to-handle sodium salts of sulfonyl oximes were first identified to proceed via visible-light-driven phophine-mediated successive deoxygenation to realize the anti-Markovnikov hydrothiolation of alkenes, which could serve as an odorless sulfur source. Mechanistic studies revealed that the key thiyl radical intermediate could be generated in situ from the sulfonyl oxime anion via a phosphine-mediated fragmentation and a sequential deoxygenation process. Notably, a wide range of alkenes, including acrylamides, acrylates, vinyl ketones, vinyl sulfones, and acrylonitriles, are competent substrates for this protocol, which is highly beneficial for the construction of structurally diversified organosulfur compounds.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
4
|
Wang L, Yang P, Yuan J, Lian W, Jin X, Zhang S, Yang L, Xing D. Visible-Light-Promoted Deoxygenative Alkylation of Quinoxalin-2(1 H)-ones with Activated Alcohols. J Org Chem 2024; 89:6334-6344. [PMID: 38616699 DOI: 10.1021/acs.joc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A one-pot strategy for deoxygenative alkylation of alcohols with quinoxalin-2(1H)-ones was developed by using xanthate salts as alcohol-activating groups for radical generation in the presence of tricyclohexylphosphine under visible-light-promoted conditions. The remarkable features of this reaction include a broad substrate scope, excellent functional group tolerance, mild conditions, and simple operation. Moreover, the synthetic utility of this reaction was validated by the success of two-step one-pot reactions, scale-up synthesis, and chemoselective radical monodeoxygenation of diols.
Collapse
Affiliation(s)
- Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Lian
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xinrong Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Sanyu Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
5
|
Zhao MY, Tang JJ, Lin YJ, Tian ZY, Peng S, Xie LY. Ts 2O Promoted Deoxygenative C-H Dithiocarbonation of Quinoline N-Oxides with Potassium O-Alkyl Xanthates. J Org Chem 2024; 89:5560-5572. [PMID: 38564232 DOI: 10.1021/acs.joc.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A simple, efficient, and practical method for the synthesis of S-quinolyl xanthates was developed via Ts2O-promoted deoxygenative C-H dithiocarbonation of quinoline N-oxides with various potassium O-alkyl xanthates. The reaction performed well under transition-metal-free, base-free, and room-temperature conditions with wide substrate tolerance. Employing potassium O-tert-butyl xanthate (tBuOCS2K) as a nucleophile, some valuable quinoline-2-thiones were unexpectedly obtained in a one-pot reaction without any additional base.
Collapse
Affiliation(s)
- Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| |
Collapse
|
6
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
7
|
Xiong Y, Wu X. Deoxygenative coupling of alcohols with aromatic nitriles enabled by direct visible light excitation. Org Biomol Chem 2023; 21:9316-9320. [PMID: 37982141 DOI: 10.1039/d3ob01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A general and practical protocol is presented for visible-light-driven deoxygenative coupling of alcohols with aromatic nitriles in the absence of external photocatalysts. Utilizing a hydroxyl activation strategy with carbon disulfide, this C(sp3)-C(sp2) constructing platform accommodates a broad scope of alcohols and aryl nitriles to deliver various alkyl-substituted arenes. Mechanism studies show that a single electron transfer event between a photoexcited aryl nitrile and a xanthate anion is key to the transformation.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
8
|
Dey J, Banerjee N, Daw S, Guin J. Photochemical Oximesulfonylation of Alkenes Using Sulfonyl-Oxime-Ethers as Bifunctional Reagents. Angew Chem Int Ed Engl 2023; 62:e202312384. [PMID: 37653722 DOI: 10.1002/anie.202312384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
Utilization of oxime ethers as bifunctional reagents remains unknown. Herein, we present a mechanistically distinct strategy that enables oximesulfonylation of olefins using sulfonyl-oxime-ethers as bifunctional reagents under metal-free photochemical conditions. Via concomitant C-S and C-C bond formation, the process permits incorporation of oxime and sulfonyl groups into olefins in a complete atom-economic fashion, providing rapid access to multi-functionalized β-sulfonyl oxime ethers with good yields and stereoselectivity. The method is amenable to functionalization of complex bioactive molecules and is shown to be scalable. A radical chain mechanism initiated via photochemical Hydrogen Atom Transfer (HAT) mediated N-O bond cleavage is suggested for the process, based on our results on mechanistic investigations.
Collapse
Affiliation(s)
- Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Swikriti Daw
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
9
|
He BQ, Wu X. Deuterium- and Electron-Shuttling Catalysis for Deoxygenative Deuteration of Alcohols. Org Lett 2023; 25:6571-6576. [PMID: 37646435 DOI: 10.1021/acs.orglett.3c02432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A practical and precise method for visible-light-promoted deoxygenative deuteration of common aliphatic alcohols using D2O as the deuterium source is reported. Upon intermediacy of xanthate anions, a variety of primary, secondary, and tertiary alcohols can be facilely transformed into deuterioalkanes with excellent D-incorporation at predicted sites. The deoxygenation and deuteration sequence is catalyzed by in situ formed deuterated 2-mercaptopyridine, which plays dual roles as a deuterium atom transfer catalyst and an electron shuttle as well.
Collapse
Affiliation(s)
- Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Rajai-Daryasarei S, Hosseini MS, Balalaie S. Chemoselective Reduction of α,β-Unsaturated Carbonyl Compounds via a CS 2/ t-BuOK System: Dimethyl Sulfoxide as a Hydrogen Source. J Org Chem 2023. [PMID: 37471258 DOI: 10.1021/acs.joc.3c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A novel and practical approach to access saturated ketones from unsaturated ketone derivatives via a CS2/t-BuOK system in dimethyl sulfoxide (DMSO) is reported. The in situ generation of xanthate salt through the reaction of carbon disulfide and potassium tert-butoxide is essential to this transformation. Deuterium-labeling experiments demonstrated that DMSO can act as a hydrogen donor.
Collapse
Affiliation(s)
- Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Mir Sadra Hosseini
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|