1
|
Li M, Miao DY, Gao F, Sun GQ, Chen DP, Qiu YF, Li SX, Quan ZJ, Wang XC, Liang YM. Photoinduced Ag-Mediated Azaspirocyclic Approach Involves Cyclization and Dearomatization. J Org Chem 2024; 89:17271-17280. [PMID: 39530912 DOI: 10.1021/acs.joc.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A visible-light-promoted protocol for azaspirocyclic synthesis from N-benzylacrylamides and alkyl chlorooxoacetates has been established. This cascade reaction proceeds through sequential free radical addition, cyclization, and dearomatization, enabling the convenient construction of key azaspirocyclic derivatives and the introduction of valuable ester groups in a single step. In addition, this transformation demonstrates broad substrate compatibility and high tolerance toward different functional groups, showcasing remarkable efficiency in functional group insertion and bond formation.
Collapse
Affiliation(s)
- Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Yu Miao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Guo-Qing Sun
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yi-Feng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Raji Reddy C, Srinivasu E, Theja A, Subbarao M, Enagandhula D, Sridhar B. Ag-Catalyzed Domino Decarboxylative Alkylation/Dearomative Annulation: Entry to Fused-Pyrido[4,3- b]Indolones. Org Lett 2024; 26:9146-9150. [PMID: 39387659 DOI: 10.1021/acs.orglett.4c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Here we report the development of unprecedented silver-catalyzed intramolecular annulations of N-acrolyl-2-(3-indolyl) benzimidazoles with alkyl carboxylic acids to construct complex fused-pentacyclic alkaloid scaffolds. Divergent reactivities are noticed with altered groups at C2-indole of the substrate. The reaction proceeds through decarboxylative alkylation, followed by dearomative annulation in a domino manner with excellent diastereoselectivity. Owing to the reactivity of the tert-OH group, these aza-enriched scaffolds can be further functionalized.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Agnuru Theja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Damodar Enagandhula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
3
|
Raji Reddy C, Rathaur A, Karuna Sagar B. Acid-Mediated Intramolecular Cyclizations of ( N-Aryl)-acetylenic Sulfonamides: Synthesis of Fused and Spirocyclic Sultams. J Org Chem 2024; 89:14120-14128. [PMID: 39276110 DOI: 10.1021/acs.joc.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Herein, we report acid-mediated divergent annulations of (N-aryl)-alkynyl sulfonamides. The substituent at the para position of the N-aryl group determines two diverse reaction paths, leading to the selective assembly of benzo-fused sultams and spirocyclic sultams. This strategy provides a series of benzo/spiro-sultams with wide functional group compatibility and good to excellent yields under mild reaction conditions. Additionally, scale-up reaction and further transformations of the products were also carried out to demonstrate the utility of the protocol.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Rathaur
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Banoth Karuna Sagar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Raji Reddy C, Islam J, Nagendraprasad T, Ajaykumar U. Electrochemical selenylative ipso-annulation of N-benzylacrylamides to construct seleno-azaspiro[4.5]decadienones. Org Biomol Chem 2024. [PMID: 39011907 DOI: 10.1039/d4ob00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Herein, we present the electrochemical synthesis of selenylated azaspiro[4.5]decadienones through domino selenylation/ipso-annulation of N-benzylacrylamides with diselenides. The method showed a wide substrate scope under mild and external oxidant-free reaction conditions, involving the construction of C-Se and C-C bonds. Gram-scale synthesis and further functional group conversion of the product are also demonstrated.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jannatul Islam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Thallamapuram Nagendraprasad
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Reddy CR, Prasad AS, Ajaykumar U. A Domino Dearomative ipso-Annulation/Desymmetrization Approach: Stereoselective Access to Tricyclic Alkaloid Skeletons. Org Lett 2024; 26:4904-4909. [PMID: 38836597 DOI: 10.1021/acs.orglett.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Herein, we reveal an unprecedented domino annulation of N-benzyl-acrylamides with 1,3-dicarbonyls for the assembly of fused tricyclic alkaloid frameworks incorporating a spirocycle via an alkylation/dearomative ipso-annulation/Michael addition (desymmetrization) sequence. This conversion involves three carbon-carbon bond formations, generating four chiral carbons, including three quaternary carbon centers, in a single diastereomer in one pot under identical reaction conditions. The synthetic potential of this atom-economic method is illustrated by modifications of the functional groups present in the products obtained.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aratikumari Suresh Prasad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Reddy CR, Theja A, Srinivasu E, Subbarao M. Dearomative ipso-Cyclization to Spiropseudoindoxyls: An Extendable Approach To Access Indolo[3,2- c]quinolinones and Isocryptolepine. Org Lett 2024; 26:68-72. [PMID: 38160428 DOI: 10.1021/acs.orglett.3c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A metal-free oxidative intramolecular dearomative spirocyclization of indole-3-formyl-2-carboxamides has been developed for the first time, affording spiropseudoindoxyls in good yields. This domino process proceeds through sequential oxidation, decarboxylation and ipso-arylation. The unique feature of this approach includes the compatibility of N-protected-indole-2-carboxamides. Further, a hitherto unknown rearrangement of spiropseudoindoxyls to indoloquinolones has been achieved. The synthetic utility of this strategy has also been showcased by the construction of a natural alkaloid, isocryptolepine.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Agnuru Theja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Reddy CR, Srinivasu E, Subbarao M. Seleno/Thio-functionalized ipso-Annulation of N-Propiolyl-2-arylbenzimidazole to Construct Azaspiro[5,5]undecatrienones. J Org Chem 2023; 88:16485-16496. [PMID: 37943010 DOI: 10.1021/acs.joc.3c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Till date, the ipso-cyclization of propiolamides is limited to provide azaspiro[4,5]decatrienones. Herein, we present the first example of ipso-carbocyclization, leading to azaspiro[5,5]-undecatrienones from N-propiolyl-2-arylbenzimidazoles, involving both the radical-based and electrophilic reactions. This report establishes an access to a wide range of chalcogenated (SCN/SCF3/SePh) benzimidazo-fused azaspiro[5,5]undecatrienones in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Zhang Z, Zhang W, Hou ZW, Li P, Wang L. Electrophilic Halospirocyclization of N-Benzylacrylamides to Access 4-Halomethyl-2-azaspiro[4.5]decanes. J Org Chem 2023; 88:13610-13621. [PMID: 37694951 DOI: 10.1021/acs.joc.3c01315] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
An electrophilic spirocyclization of N-benzylacrylamides with N-halosuccinimides (NXS) as the halogenating reagents has been developed. This reaction is carried out at room temperature under simple conditions without relying on metal reagents, photochemistry, or electrochemistry, providing a fast and efficient route to synthesize a wide variety of 4-halomethyl-2-azaspiro[4.5]decanes with satisfactory yields. The approach is further highlighted through gram-scale synthesis and diverse transformations of the spiro products.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Wei Zhang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Raji Reddy C, Fatima S, Kolgave DH, Sridhar B. Radical-mediated sulfonylative/thiolative cyclization of biaryl enones to phenanthrone derivatives. Org Biomol Chem 2023; 21:7327-7338. [PMID: 37646289 DOI: 10.1039/d3ob01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An approach for the assembly of phenanthrone derivatives bearing all carbon quaternary centres has been developed through visible light-promoted tandem sulfonylation/intramolecular-arylation of biaryl enones with sulfonyl chlorides. A series of sulfonylated 10,10-dialkylphenanthrones were obtained in good yields. In addition, the approach has been extended to thiotrifluoromethyl (SCF3) and thiocyanato (SCN) radicals to obtain the corresponding phenanthrones under oxidative conditions. The synthetic utility was also illustrated by the scalability and further transformations of the product.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
10
|
Reddy CR, Ajaykumar U, Patil AD, Ramesh R. ipso-Cyclization of unactivated biaryl ynones leading to thio-functionalized spirocyclic enones. Org Biomol Chem 2023; 21:6379-6388. [PMID: 37492954 DOI: 10.1039/d3ob00974b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ceric ammonium nitrate (CAN)-promoted oxidative ipso-cyclization of unactivated biaryl ynones with S-centered radicals (SCN/SCF3) to access spiro[5,5]trienones has been established. This approach displayed excellent regioselectivity towards spirocyclization and tolerated a variety of functional groups. Dearomatization of hitherto unknown aryl/heteroaryl groups is also disclosed. DMSO is employed as a low-toxicity, inexpensive solvent as well as a source of oxygen.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|