1
|
Lenhard MS, Winter J, Sandvoß A, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Simple and versatile electrochemical synthesis of highly substituted 2,1-benzisoxazoles. Org Biomol Chem 2024. [PMID: 39660434 PMCID: PMC11632592 DOI: 10.1039/d4ob01875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A sustainable, general and scalable electrochemical protocol for direct access to 3-(acylamidoalkyl)-2,1-benzisoxazoles by cathodic reduction of widely accessible nitro arenes is established. The method is characterised by a simple undivided set-up under constant current conditions, inexpensive and reusable carbon-based electrodes, and environmentally benign reaction conditions. The versatility of the developed protocol is demonstrated on 39 highly diverse examples with up to 81% yield. A 50-fold scale-up electrolysis highlights its relevance for preparative applications.
Collapse
Affiliation(s)
- Marola S Lenhard
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander Sandvoß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
3
|
Awasthi A, Tiwari K, Yadav P, Bhowmick S, Tiwari DK. Synthesis of 4-styrylquinolines via direct oxidative C3-alkenylation of anthranils under Pd(II) catalysis. Chem Commun (Camb) 2024; 60:2054-2057. [PMID: 38288529 DOI: 10.1039/d3cc05790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The palladium-catalyzed oxidative C3-alkenylation of anthranils (2,1-benzisoxazoles) with various styrenes has been successfully achieved. The C3-alkenylated anthranils were subsequently utilized in a [4+2]-cycloaddition with in situ generated α,β-unsaturated ketones leading to the synthesis of a diverse range of olefin-containing quinolines. Notably, this reaction exclusively yielded mono-alkenylated products with E-selectivity. The optimized catalytic conditions were compatible with a wide variety of substituted olefins and anthranils, forming various C3-alkenylated anthranils with good yields. To showcase the application of the present methodology, the C3-alkenylated anthranils have been employed as synthons to access a wide range of substituted quinolines.
Collapse
Affiliation(s)
- Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Pushpendra Yadav
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Suman Bhowmick
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| |
Collapse
|