1
|
Zhou X, Xu W, Wang B, Iqbal A, Chen Z, Xia Y, Jin W, Liu C, Zhang Y. Photo-Driven Regiodivergent Arylation/Cyclization and Arylation/Hydroxylation of N-Aryl Methacrylamides with Aryltriazenes: Access to Functionalized 3,3-Disubstituted Oxindoles and α-Hydroxylamides. J Org Chem 2024; 89:13345-13358. [PMID: 39167091 DOI: 10.1021/acs.joc.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A metal-free, light-induced regiodivergent functionalization of α,β-unsaturated amides with aryltriazenes under ambient conditions was developed. The visible light and B(C6F5)3 cocatalyzed radical cascade arylation/cyclization of N-alkyl-N-arylmethacrylamides can obtain functionalized 3,3-disubstituted oxindoles with the assistance of photocatalyst eosin Y-Na2. In the absence of any catalyst, with purple light irradiation and electron-donor-acceptor (EDA) complex initiation, the radical cascade arylation/hydroxylation of N-arylmethacrylamides affords α-hydroxylamides. This methodology highlights the arts in accessing different regioisomers by altering the substrates and photocatalytic strategies.
Collapse
Affiliation(s)
- Xinlei Zhou
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Wei Xu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Azhar Iqbal
- Department of Chemistry, Bacha Khan University, Charsadda 24420, Pakistan
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| |
Collapse
|
2
|
Li Y, Peng Z, Liu D, Pan M, Shen Y, You H, Zhao M, Li W. Palladium-Catalyzed Suzuki-Miyaura Reactions with Triazenyl-Tethered Aryl Bromides: Exploiting the Orthogonal Coupling Sites under Different Conditions. J Org Chem 2024; 89:13296-13307. [PMID: 39259940 DOI: 10.1021/acs.joc.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Transition-metal-catalyzed cross-coupling of arenes bearing two or more potential coupling sites is often challenging because of the chemoselectivity issue. If orthogonal cross-couplings were applicable, one can develop a synthetically useful approach for consecutive functionalization of the starting arenes compounds. We herein reported a Suzuki-Miyaura coupling of triazenyl-substituted aryl bromides catalyzed by PdCl2(PCy3)2/PPh3 under basic conditions. The resultant polyfunctionalized aryl triazenes could undergo Suzuki-Miyaura couplings under acidic conditions or be converted to many other functionalized arenes. This orthogonal coupling strategy allows for a sequential functionalization of arenes with same type of nucleophilic reagents toward the synthesis of diverse biaryls and teraryls.
Collapse
Affiliation(s)
- Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhiyong Peng
- Chengda Pharmaceuticals Co., Ltd., No. 36, Huanghe Road, Huimin Subdistrict, Jiashan, Jiaxing, Zhejiang 314100, China
| | - Daming Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hui You
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mengmeng Zhao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, PR China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
3
|
Wang B, Shao Y, Chen Z, Xia Y, Xue F, Jin W, Wu S, Zhang Y, Liu C. Photoinduced Catalyst-Free Deuterodefunctionalization of Aryltriazenes with CDCl 3. Org Lett 2024; 26:4329-4334. [PMID: 38743509 DOI: 10.1021/acs.orglett.4c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A photoinduced deuterodetriazenation of aryltriazenes with CDCl3 under catalyst-free conditions is reported. The reactions featured simple operation, ecofriendly conditions, readily available reagents, inexpensive D sources, precise site selectivity, and a wide range of substrates. Since aryltriazenes could be readily synthesized from arylamine, this protocol can be used as a general method for easily and accurately incorporating deuterium into aromatic systems by using CDCl3 as a D source.
Collapse
Affiliation(s)
- Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Analysis and Testing Center, Xinjiang University, Urumqi 830017, P. R. China
| | - Yang Shao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
4
|
Song Q, Zhang L, Wang B, Chen Z, Jin W, Xia Y, Wu S, Liu C, Zhang Y. Pd-Catalyzed Direct C7 Trifluoromethylation of Indolines with Umemoto's Reagent. Org Lett 2024; 26:3685-3690. [PMID: 38286988 DOI: 10.1021/acs.orglett.3c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
An efficient palladium-catalyzed region-selective C7-trifluoromethylation of indolines using commercially available Umemoto's reagent was reported. The reaction utilizing Umemoto's reagent as CF3 radical precursor, pyrimidine as a removable directing group, Pd(II) as a catalyst, and Cu(II) as an oxidant furnished the required products with excellent regioselectivities and good yields. The present strategy has good region-selectivity, broad substrate scope, and scale-up application. Additionally, the present method was underlined by the direct C-1 trifluoromethylation of carbazoles. Furthermore, C7 trifluoromethylated indole can also be easily obtained via Pd-catalyzed direct C-7 trifluoromethylation/oxidation/deprotection sequential reactions.
Collapse
Affiliation(s)
- Qinglang Song
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Lin Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|