1
|
Mondal S, Tanaka F. Catalytic Enantioselective Aldol Reactions of Pyruvates as Nucleophiles with Chlorinated and Fluorinated Aldehydes and Ketones. J Org Chem 2024; 89:15972-15978. [PMID: 39441870 DOI: 10.1021/acs.joc.4c02253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Reactions of pyruvates as nucleophiles under catalytic conditions are difficult to control without the use of enzymes as catalysts. Here, enantioselective aldol reactions of pyruvates with chlorinated and fluorinated aldehydes and ketones under organocatalytic conditions, in which pyruvates act as nucleophiles, are reported. Based on analyses of self-aldol reactions of pyruvates in the presence of model catalysts, catalysts of the desired cross aldol reactions were developed. Using the primary amine-derived catalyst, the desired aldol products, i.e., γ-chlorinated alkyl or γ-fluorinated alkyl group-substituted γ-hydroxy α-ketoesters, were obtained in good to high yields with high enantioselectivities.
Collapse
Affiliation(s)
- Santanu Mondal
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Zhong Z, Wu H, Chen X, Luo Y, Yang L, Feng X, Liu X. Visible-Light-Promoted Enantioselective Acylation and Alkylation of Aldimines Enabled by 9-Fluorenone Electron-Shuttle Catalysis. J Am Chem Soc 2024; 146:20401-20413. [PMID: 38981037 DOI: 10.1021/jacs.4c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Chiral acyclic α-tertiary amino ketones are widely present in various natural products and pharmaceuticals; however, the direct synthesis of this pharmacophore through a robust strategy still presents significant challenges. The emerging photocatalysis provides a powerful approach to construct chemical bonds that are difficult to form via a traditional two-electron pathway. Herein, we developed visible-light-induced chiral Lewis acid-catalyzed highly enantioselective acylation/alkylation of aldimines enabled by cooperative FLN (9-fluorenone) electron-shuttle catalysis via radical addition. An array of α-tertiary amino ketones, β-amino alcohols, and chiral amines were achieved with high yields and good to excellent stereocontrol (87 examples, up to 84% yield, 96% ee). These products can be easily transformed into valuable and bioactive skeletons. Extensive control experiments, detailed mechanism studies, and density functional theory calculations elucidated the reaction process and highlighted the crucial role played by FLN.
Collapse
Affiliation(s)
- Ziwei Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongda Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaofan Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Chen KL, Tanaka F. Organocatalytic enantioselective Mannich and retro-Mannich reactions and combinations of these reactions to afford tetrasubstituted α-amino acid derivatives. Org Biomol Chem 2024; 22:477-481. [PMID: 38099926 DOI: 10.1039/d3ob01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organocatalytic asymmetric Mannich reactions and kinetic resolutions of the products via retro-Mannich reactions that afford enantiomerically enriched tetrasubstituted α-amino acid derivatives (α,α-disubstituted-α-amino acid derivatives) were developed. Furthermore, the combination of the Mannich reaction and the retro-Mannich reaction allowed access to products with almost perfect enantiopurities.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|