1
|
Tang YY, Yang L, Gao SY, Guo Y, Zhang PL. Nickel-Catalyzed Decarboxylative Cross-Coupling of NHPI Esters to Access 1,4-Dialkylbenzenes. J Org Chem 2024; 89:18472-18476. [PMID: 39625158 DOI: 10.1021/acs.joc.4c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A practical nickel-catalyzed decarboxylative cross-coupling of N-hydroxyphthalimide esters with 1,4-diiodobenzene analogues has been developed. Under mild reaction conditions, a series of structurally interesting 1,4-dialkylbenzene analogues have been accessed with good functional group tolerance, which are versatile precursors for organic synthesis and a kind of important unit for bioactive molecules, polymers, and other materials. The synthetic application of this methodology was demonstrated by the synthesis of 3-6-dialkylcarbazole derivatives.
Collapse
Affiliation(s)
- Yi-Yang Tang
- College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Lan Yang
- College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Si-Yu Gao
- College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Yang Guo
- College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Peng-Lin Zhang
- College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Tcyrulnikov S, Hubbell AK, Pedro D, Reyes GP, Monfette S, Weix DJ, Hansen EC. Computationally Guided Ligand Discovery from Compound Libraries and Discovery of a New Class of Ligands for Ni-Catalyzed Cross-Electrophile Coupling of Challenging Quinoline Halides. J Am Chem Soc 2024; 146:6947-6954. [PMID: 38427582 DOI: 10.1021/jacs.3c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Although screening technology has heavily impacted the fields of metal catalysis and drug discovery, its application to the discovery of new catalyst classes has been limited. The diversity of on- and off-cycle pathways, combined with incomplete mechanistic understanding, means that screens of potential new ligands have thus far been guided by intuitive analysis of the metal binding potential. This has resulted in the discovery of new classes of ligands, but the low hit rates have limited the use of this strategy because large screens require considerable cost and effort. Here, we demonstrate a method to identify promising screening directions via simple and scalable computational and linear regression tools that leads to a substantial improvement in hit rate, enabling the use of smaller screens to find new ligands. The application of this approach to a particular example of Ni-catalyzed cross-electrophile coupling of aryl halides with alkyl halides revealed a previously overlooked trend: reactions with more electron-poor amidine ligands result in a higher yield. Focused screens utilizing this trend were more successful than serendipity-based screening and led to the discovery of two new types of ligands, pyridyl oxadiazoles and pyridyl oximes. These ligands are especially effective for couplings of bromo- and chloroquinolines and isoquinolines, where they are now the state of the art. The simplicity of these models with parameters derived from metal-free ligand structures should make this approach scalable and widely accessible.
Collapse
Affiliation(s)
- Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dylan Pedro
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
3
|
Akana ME, Tcyrulnikov S, Akana-Schneider BD, Reyes GP, Monfette S, Sigman MS, Hansen EC, Weix DJ. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2024; 146:3043-3051. [PMID: 38276910 DOI: 10.1021/jacs.3c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)-C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2'-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parameterization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational ligand library, correlation of observed reaction outcomes with features of the ligands, and the in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a 5-fold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.
Collapse
Affiliation(s)
- Michelle E Akana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Akana-Schneider
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|