1
|
Shen J, Chen M, Du X. Photoredox-Catalyzed Regioselective 1,3-Alkoxypyridylation of gem-Difluorocyclopropanes. Org Lett 2024; 26:10628-10633. [PMID: 39631167 DOI: 10.1021/acs.orglett.4c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Difluoromethylene and pyridine cores are very important structural units in medicinal chemistry. Herein, we report the development of photoredox-catalyzed ring-opening and 1,3-alkoxypyridylation of gem-difluorinated cyclopropanes using 4-cyanopyrines and alcohols, employing cyclopropane radical cations as the key intermediate. The reaction exhibits high regioselectivity under mild conditions and can also be practiced on gram-scale synthesis, telescoped reaction, and late-stage functionalization of biological molecules.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Meijun Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaozheng Du
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Huang J, Li Y, You Y, He X, Wang X, Yuan K. Pd II/Cu I-Cocatalyzed Radical Arylation of gem-Difluoroalkenes Using Arylsulfonyl Chlorides. J Org Chem 2024; 89:17761-17767. [PMID: 39514978 DOI: 10.1021/acs.joc.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A PdII/CuI-cocatalyzed arylation of gem-difluoroalkenes with arylsulfonyl chlorides, affording various defluorinative arylation/1,2-difunctionalized products, was developed. The interception of aryl radicals generated from the reduction of arylsulfonyl chlorides delivers some hypervalent Pd species, which present high reactivities and chemoselectivities toward the defluorinative arylation product formation. Besides, the nature of the electron-deficient Pd metal center is more prone to reductive elimination under acidic conditions, providing an opportunity to explore new reactivates of fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaozhen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
3
|
Zhong Y, Zhuang Z, Zhang X, Xu B, Yang C. Difunctionalization of gem-difluoroalkenes for amination and heteroarylation via metal-free photocatalysis. Chem Commun (Camb) 2024; 60:4830-4833. [PMID: 38619085 DOI: 10.1039/d4cc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.
Collapse
Affiliation(s)
- Yuanchen Zhong
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Zhen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Bin Xu
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
4
|
Zong Y, Tsui GC. Addition of Carboxylic Acids to gem-Difluoroalkenes for the Synthesis of gem-Difluoromethylenated Compounds. Org Lett 2024; 26:1261-1264. [PMID: 38301042 PMCID: PMC10877607 DOI: 10.1021/acs.orglett.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
We herein describe a straightforward protocol for the synthesis of carboxylic esters containing a gem-difluoromethylene unit. Readily available carboxylic acids can act as nucleophiles to add regioselectively to tetrasubstituted or trisubstituted β,β-difluoroacrylates (formal hydroacetoxylation) for the construction of RCO2-CF2 bonds. Thermal conditions are sufficient without the use of catalysts or additives.
Collapse
Affiliation(s)
- Yuwei Zong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New
Territories 999077, Hong
Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New
Territories 999077, Hong
Kong SAR, China
| |
Collapse
|