1
|
Yi W, Tran-Nguyen VK, Boumendjel A. One-step synthesis of diaryloxadiazoles as potent inhibitors of BCRP. Future Med Chem 2024; 16:723-735. [PMID: 38573062 PMCID: PMC11157995 DOI: 10.4155/fmc-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.
Collapse
Affiliation(s)
- Wei Yi
- Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, Paris, 75013, France
| | | |
Collapse
|
2
|
Tiwari MK, Iqubal A, Das P. Intramolecular oxidative C–N bond formation under metal-free conditions: One-pot global functionalization of pyrazole ring. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Lekkala C, Bodala V, Yettula K, Karasala BK, Podugu RL, Vidavalur S. Copper-Catalyzed One-Pot Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles from Arylacetic Acids and Hydrazides via Dual Oxidation. ACS OMEGA 2022; 7:27157-27163. [PMID: 35967030 PMCID: PMC9366783 DOI: 10.1021/acsomega.2c01586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A simple and efficient protocol has been developed to access symmetrical and unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles from arylacetic acids and hydrazides via copper-catalyzed dual oxidation under an oxygen atmosphere. Oxidative decarboxylation of arylacetic acids and oxidative functionalization of the imine C-H bond are the key steps. This is the first example of the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles through dual oxidation in one-pot. Avoidance of the expensive ligand and high yield of the products are advantageous features of the developed method.
Collapse
|
4
|
Mao K, Ma Y, Lv L, Li Z. [4+1] Cyclization of α‐CF3 Carbonyls with Hydrazides: Synthesis of 1,3,4‐Oxadiazoles under Ambient Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kuantao Mao
- Renmin University of China Chemistry Beijing CHINA
| | - Yangyang Ma
- Renmin University of China Chemistry Beijing CHINA
| | - Leiyang Lv
- Renmin University of China Chemistry Beijing CHINA
| | - Zhiping Li
- Renmin University of China Department of Chemistry Zhongguancun Street No.59 100872 Beijing CHINA
| |
Collapse
|
5
|
Abdelfattah AM, Mekky AEM, Sanad SMH. Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2095211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Sharma D, Om H, Sharma AK. Potential Synthetic Routes and Metal-Ion Sensing Applications of 1,3,4-Oxadiazoles: An Integrative Review. Crit Rev Anal Chem 2022; 54:416-436. [PMID: 35617470 DOI: 10.1080/10408347.2022.2080494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxadiazoles, especially 1,3,4-oxadiazole scaffolds, stand among the foremost heterocyclic fragments with a broad spectrum of applications in diverse fields, including pharmacology, polymers, material science, and organic electronics, among others. In this comprehensive review, we summarize the pivotal synthetic strategies for 1,3,4-oxadiazole derivatives including dehydrogenative cyclization of 1,2-diacylhydrazines, oxidative cyclization of acylhydrazones, condensation cyclization, C-H activation of oxadiazole ring, decarboxylative cyclization and oxidative annulation along with plausible mechanisms. The set of 1,3,4-oxadiazoles selected from the literature and discussed herein epitomize the ease of synthesis as well as the possibility of linking π-conjugated groups; thereby encouraging the use of these molecules as important starting building blocks for a wide variety of fluorescent frameworks, particularly in the development of potential chemosensors. High photoluminescent quantum yield, excellent thermal and chemical stability, and the presence of potential coordination (N and O donor atoms) sites make these molecules a prominent choice for metal-ions sensors. An overview of selective metal-ion sensing, the detection limit along with the sensing mechanisms (photo-induced electron transfer, excited-state intramolecular proton transfer, and complex formation) is also included.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, India
| | - Hari Om
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, India
| | - Ashok Kumar Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, India
| |
Collapse
|
7
|
Yarmohammadi E, Beyzaei H, Aryan R, Moradi A. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol Divers 2021; 25:2367-2378. [PMID: 32770458 DOI: 10.1007/s11030-020-10125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
One of the goals of green chemistry is to use environmentally friendly solvents or remove and reduce the volume of harmful spent solvents. In this study, a novel process for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiol derivatives was proposed via ultrasound-assisted reaction of aryl hydrazides with CS2 (1:1 molar ratio) in some drops of DMF in the absence of basic or acidic catalysts. They were produced in good to excellent yields under easy workup and purification conditions. In order to prove the usefulness of the prepared compounds, their antioxidant, antibacterial, and antifungal potentials were screened by DPPH free radical scavenging, serial twofold microdilution and streak plate methods. Acceptable to significant inhibitory activities were observed with synthesized heterocycles. The results showed that 5-(4-fluorophenyl)-1,3,4-oxadiazole-2-thiol (3c) is an broad-spectrum antimicrobial agent. Many of them displayed remarkable antioxidant properties comparable to standard controls (ascorbic acid and α-tocopherol). Synthesized 1,3,4-oxadiazoles are also potent candidates to treat cancer, Parkinson, inflammatory, and diabetes diseases. Eighteen 5-substituted 1,3,4-oxadiazole-2-thiol derivatives as potent antimicrobial and antioxidant agents were prepared via a new, efficient and green procedure.
Collapse
Affiliation(s)
- Elahe Yarmohammadi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Aryan
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ashraf Moradi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
8
|
Li X, Liao S, Chen Y, Xia C, Wang G. Cobalt(II) nitrate promoted cyclization of benzoyl hydrazone for the synthesis of 2,5-diphenyl-1,3,4-oxadiazole derivatives. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211045932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A Co(NO3)2 method to promote cyclization of benzoyl hydrazone for the formation of 2,5-diphenyl-1,3,4-oxadiazoles has been developed. The reaction proceeded smoothly and was promoted by Co(NO3)2 under air at 110 °C in DCE; 16 examples of products were obtained.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Shandong Polytechnic College, Jining, P.R. China
| | - Chengcai Xia
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, P.R. China
| | - Guodong Wang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, P.R. China
| |
Collapse
|
9
|
Li J, Wen JX, Lu XC, Hou GQ, Gao X, Li Y, Liu L. Catalyst-Free Visible-Light-Promoted Cyclization of Aldehydes: Access to 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives. ACS OMEGA 2021; 6:26699-26706. [PMID: 34661023 PMCID: PMC8515816 DOI: 10.1021/acsomega.1c04098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 06/01/2023]
Abstract
An efficient synthesis of a variety of 2,5-disubstituted 1,3,4-oxadiazole derivatives via a cyclization reaction by photoredox catalysis between aldehydes and hypervalent iodine(III) reagents is described. The reaction proceeds under mild conditions and affords various target compounds in excellent yields. The commercially available aldehydes without preactivation and a simple visible-light-promoted procedure without any catalysts make this strategy an alternative to the conventional methods.
Collapse
Affiliation(s)
- Jian Li
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xu Gao
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yang Li
- School
of Pharmaceutical Engineering, Jiangsu Food
& Pharmaceutical Science College, Huaian 223003, China
| | - Li Liu
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Huang H, Zou X, Cao S, Peng Z, Peng Y, Wang X. N-Heterocyclic Carbene-Catalyzed Cyclization of Aldehydes with α-Diazo Iodonium Triflate: Facile Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2021; 23:4185-4190. [PMID: 33989007 DOI: 10.1021/acs.orglett.1c01128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a novel organocatalytic process for synthesis of complex 1,3,4-oxadiazoles from readily accessible aldehydes. By exploiting the nucleophilicity of the putative Breslow intermediate and the inherent electrophilicity of α-diazo iodonium triflate, we have found that N-heterocyclic carbene catalyst promotes efficient cyclization of various aldehydes and α-diazo iodonium triflates. The reaction proceeds under mild conditions with a wide range of functional group tolerance. The heterocyclic products can be readily further functionalized, rendering the protocol highly valuable.
Collapse
Affiliation(s)
- Hang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Xianghua Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Si Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yingying Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Xi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
11
|
Du Y, Qu Z, Wang H, Cui H, Wang X. Review on the Synthesis and Performance for 1,3,4‐Oxadiazole‐Based Energetic Materials. PROPELLANTS EXPLOSIVES PYROTECHNICS 2021. [DOI: 10.1002/prep.202000318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yao Du
- High-Tech Institute of Xi'an Xi'an Shaanxi 710025 China
| | - Zhongkai Qu
- High-Tech Institute of Xi'an Xi'an Shaanxi 710025 China
| | - Huanchun Wang
- High-Tech Institute of Xi'an Xi'an Shaanxi 710025 China
- Shaanxi Engineering Laboratory for Advanced Energy Technology School of Materials Science & Engineering Shaanxi Normal University Xi'an Shaanxi 710119 China
- Shaanxi Key Laboratory of Special Fuel Chemistry and Material Xi'an Shaanxi 710025 China
| | - Hu Cui
- High-Tech Institute of Xi'an Xi'an Shaanxi 710025 China
- Shaanxi Key Laboratory of Special Fuel Chemistry and Material Xi'an Shaanxi 710025 China
| | - Xuanjun Wang
- High-Tech Institute of Xi'an Xi'an Shaanxi 710025 China
- Shaanxi Key Laboratory of Special Fuel Chemistry and Material Xi'an Shaanxi 710025 China
| |
Collapse
|
12
|
Soleimani-Amiri S. Identification of Structural, Spectroscopic, and Electronic Analysis of Synthesized 4-(5-Phenyl-1,3,4-Oxadiazol-2-Ylthio)-3-Methylbenzene-1,2-Diol: A Theoretical Approach. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1610466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Farrokhzadeh A, Modarresi-Alam AR, Akher FB, Kleinpeter E, Kelling A, Schilde U. Investigation of the unusually high rotational energy barrier about the C-N bond in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides: Insights from dynamic 1H-NMR and DFT calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Li J, Lu XC, Xu Y, Wen JX, Hou GQ, Liu L. Photoredox Catalysis Enables Decarboxylative Cyclization with Hypervalent Iodine(III) Reagents: Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2020; 22:9621-9626. [DOI: 10.1021/acs.orglett.0c03663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Lashkari M, Roudbaraki SJ, Ghashang M. Preparation of 1,3,4-oxadiazole derivatives via supported and unsupported phosphinium dibromide reagents. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the synthesis of 1,3,4-oxadiazole derivatives using triphenylphosphine dibromide/triethylamine (Ph3P/Br2/Et3N), 1,2-bis(diphenylphosphaneyl)ethane/2Br2/Et3N, and nano-silica-anchored PPh2/Br2/Et3N systems is described. The method allows the preparation of 1,3,4-oxadiazoles with a broad substrate scope from easily accessible materials.
Collapse
Affiliation(s)
| | | | - Majid Ghashang
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
16
|
Guo KL, Zhao LX, Wang ZW, Gao YC, Li JJ, Gao S, Fu Y, Ye F. Design, Synthesis, and Bioevaluation of Substituted Phenyl Isoxazole Analogues as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10550-10559. [PMID: 32886503 DOI: 10.1021/acs.jafc.0c01867] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herbicide safeners enhance herbicide detoxification in crops without affecting target weed sensitivity. To enhance crop tolerance to the toxicity-related stress caused by the herbicide acetochlor (ACT), a new class of substituted phenyl isoxazole derivatives was designed by an intermediate derivatization method as herbicide safeners. Microwave-assisted synthesis was used to prepare the phenyl isoxazole analogues, and all of the structures were confirmed via IR, 1H NMR, 13C NMR, and HRMS. Compound I-1 was further characterized by X-ray diffraction analysis. Bioassay results showed that most of the obtained compounds provided varying degrees of safening against ACT-induced injury by increasing the corn growth recovery, glutathione content, and glutathione S-transferase activity. In particular, compound I-20 showed excellent safener activity against ACT toxicity, comparable to that of the commercial safener benoxacor. Gaussian calculations have been performed and the results indicated that the nucleophilic ability of compound I-20 is higher than that of benoxacor, thus the activity is higher than that of benoxacor. These findings demonstrate that phenyl isoxazole derivatives possess great potential for protective management in cornfields.
Collapse
Affiliation(s)
- Ke-Liang Guo
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Wei Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Chao Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan-Juan Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Baek J, Je EK, Kim J, Qi A, Ahn KH, Kim Y. Experimental and Theoretical Studies on the Mechanism of DDQ-Mediated Oxidative Cyclization of N-Aroylhydrazones. J Org Chem 2020; 85:9727-9736. [PMID: 32614179 DOI: 10.1021/acs.joc.0c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The controversial single-electron-transfer process, frequently proposed in many 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated reactions, was investigated experimentally and theoretically using the oxidative cyclization of aroylhydrazone with DDQ. DDQ-mediated oxadiazole formation involves several processes, including cyclization to form an oxadiazole ring and N-H bond cleavage, either by proton, hydride, or hydrogen atom transfer. The detailed mechanistic study using the M06-2X density functional theory, and the 6-31+G(d,p) basis set, suggests that the pathways involving radical ion pair (RIP) intermediates, which resulted from single-electron transfer (SET), were found to be energetically nearly identical to the pathway without the SET. The substituent-dependent reactivity of oxadiazole formation was consistent with the free energy profiles of both pathways, with or without the SET. This result indicates that in addition to the electron-transfer pathway, the nucleophilic addition/elimination pathway for DDQ should be considered as a possible mechanism of the oxidative transformation reaction using DDQ.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Eun-Kyung Je
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Jina Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Ai Qi
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Yongho Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| |
Collapse
|
18
|
Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
|
20
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
21
|
Dong Y, Yang J, He S, Shi ZC, Wang Y, Zhang XM, Wang JY. Metal-free oxidative cross-dehydrogenative coupling of quinones with benzylic C(sp3)–H bonds. RSC Adv 2019; 9:27588-27592. [PMID: 35529195 PMCID: PMC9070767 DOI: 10.1039/c9ra05678e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
A metal-free cross-dehydrogenative coupling of quinones with toluene derivatives has been established. A series of quinones were subjected to reaction with toluene derivatives in the presence of di-tertbutyl peroxide (DTBP) for direct synthesis of benzylquinones. The method exhibits good functional group tolerance, and desired products were obtained in moderate to good yields. Meanwhile, a radical pathway was proposed to describe the cross-dehydrogenative coupling of quinones with toluene derivatives. A metal-free cross-dehydrogenative coupling of quinones with toluene derivatives has been established. A series of quinones were subjected to reaction with toluene derivatives in the presence of DTBP for direct synthesis of benzylquinones.![]()
Collapse
Affiliation(s)
- Yu Dong
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- University of Chinese Academy of Sciences
| | - Jian Yang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- University of Chinese Academy of Sciences
| | - Shuai He
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | | | - Yu Wang
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Xiao-Mei Zhang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| |
Collapse
|
22
|
Abdildinova A, Gong YD. Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry. ACS COMBINATORIAL SCIENCE 2018; 20:309-329. [PMID: 29714475 DOI: 10.1021/acscombsci.8b00044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solid-phase organic synthesis is a powerful tool in the synthesis of small organic molecules and building of libraries of compounds for drug discovery. Heterocyclic compounds are important components of the drug discovery field as well and serve as a core for hundreds of marketed drugs. In particular, oxadiazole and thiadiazole cores are compounds of great interest due to their comprehensive biological activities and structural features. Therefore, a plethora of oxadiazole and thiadiazole synthesis methodologies have been reported to date, including solution and solid-phase synthesis methodologies. In this review, we concentrate on and summarize solid-phase synthetic approaches of the oxadiazole and thiadiazole derivatives.
Collapse
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| |
Collapse
|
23
|
Kumar P, Gupta M, Bahadur V, Parmar VS, Singh BK. Radical-Induced, Palladium-Catalyzed C-H Activation: An Approach to Functionalize 4H
-Benzo[d
][1,3]oxazin-4-one Derivatives by Using Toluenes, Aldehydes, and Benzyl Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Prashant Kumar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Mohit Gupta
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Vijay Bahadur
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- SRM University Delhi-NCR; 131 029 Sonepat Haryana India
| | - Virinder S. Parmar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- Department of Chemistry; Central University of Haryana; 123 031 Mahendragarh Haryana India
| | - Brajendra K. Singh
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| |
Collapse
|
24
|
Wang L, Wang Y, Chen Q, He M. Photocatalyzed facile synthesis of 2,5-diaryl 1,3,4-oxadiazoles with polyaniline- g-C3N4-TiO2 composite under visible light. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Tokumaru K, Bera K, Johnston JN. 1,3,4-Oxadiazole and Heteroaromatic-Fused 1,2,4-Triazole Synthesis using Diverted Umpolung Amide Synthesis. SYNTHESIS-STUTTGART 2018; 49:4670-4675. [PMID: 29507449 DOI: 10.1055/s-0036-1590802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Umpolung Amide Synthesis (UmAS) has emerged as a superior alternative to conventional amide synthesis methods based on carbonyl electrophiles in a range of situations, particularly when epimerization-prone couplings are prescribed. In an unanticipated development during our most recent studies, it was discovered that diacyl hydrazide products from UmAS were not formed as intermediates when using an acyl hydrazide as the amine acceptor. This resulted in a new preparation of 1,3,4-oxadiazoles from α-bromonitroalkane donors. We hypothesized that a key tetrahedral intermediate in UmAS was diverted toward a more direct pathway to the heterocycle product rather than through formation of the diacyl hydrazide, a typical oxadiazole progenitor. In studies reported here, diversion to 1,2,4-triazole products is described, a behavior hypothesized to also result from an analogous tetrahedral intermediate, but one formed from heteroaromatic hydrazine acceptors.
Collapse
Affiliation(s)
- Kazuyuki Tokumaru
- Department of Chemistry, and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Kalisankar Bera
- Department of Chemistry, and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Jeffrey N Johnston
- Department of Chemistry, and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
26
|
Luo Z, Jiang Z, Jiang W, Lin D. C–H Amination of Purine Derivatives via Radical Oxidative Coupling. J Org Chem 2018; 83:3710-3718. [DOI: 10.1021/acs.joc.8b00066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Luo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People′s Republic of China
| | - Ziyang Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People′s Republic of China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People′s Republic of China
| | - Dongen Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People′s Republic of China
| |
Collapse
|
27
|
Abdildinova A, Yang SJ, Gong YD. Solid-phase parallel synthesis of 1,3,4-oxadiazole based peptidomimetic library as a potential modulator of protein-protein interactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Jiang Q, Qi X, Zhang C, Ji X, Li J, Liu R. Oxidant- and hydrogen acceptor-free palladium catalyzed dehydrogenative cyclization of acylhydrazones to substituted oxadiazoles. Org Chem Front 2018. [DOI: 10.1039/c7qo00749c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient method for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles has been developed through palladium(0) catalyzed dehydrogenative cyclization ofN-arylidenearoylhydrazides without oxidants and hydrogen acceptors.
Collapse
Affiliation(s)
- Qiangqiang Jiang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinghui Qi
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chenyang Zhang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xuan Ji
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jin Li
- China Catalyst Holding Co
- Ltd
- Dalian 116699
- China
| | - Renhua Liu
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
29
|
Zhou R, Han L, Zhang H, Liu R, Li R. A Deoxygenative [4+1] Annulation InvolvingN-Acyldiazenes for an Efficient Synthesis of 2,2,5-Trisubstituted 1,3,4-Oxadiazole Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700935] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rong Zhou
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 People's Republic of China
| | - Ling Han
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 People's Republic of China
| | - Honghui Zhang
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 People's Republic of China
| | - Rongfang Liu
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 People's Republic of China
| | - Ruifeng Li
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 People's Republic of China
| |
Collapse
|
30
|
Salahuddin, Mazumder A, Yar MS, Mazumder R, Chakraborthy GS, Ahsan MJ, Rahman MU. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1360911] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - A. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - M. Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - R. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - G. S. Chakraborthy
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Mujeeb Ur Rahman
- Department of Drug Discovery and Development, Alwar Pharmacy College MIA Alwar, Alwar, Rajasthan, India
| |
Collapse
|
31
|
Synthesis of 2-Amino-1,3,4-oxadiazoles through Elemental Sulfur Promoted Cyclization of Hydrazides with Isocyanides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Movahedifar F, Modarresi-Alam AR, Kleinpeter E, Schilde U. Dynamic 1H-NMR study of unusually high barrier to rotation about the partial C N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Tokumaru K, Johnston JN. A convergent synthesis of 1,3,4-oxadiazoles from acyl hydrazides under semiaqueous conditions. Chem Sci 2017; 8:3187-3191. [PMID: 28507694 PMCID: PMC5414388 DOI: 10.1039/c7sc00195a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
The 1,3,4-oxadiazole is an aromatic heterocycle valued for its low-lipophilicity in drug development. Substituents at the 2- and/or 5-positions can modulate the heterocycle's electronic and hydrogen bond-accepting capability, while exploiting its use as a carbonyl bioisostere. A new approach to 1,3,4-oxadiazoles is described wherein α-bromo nitroalkanes are coupled to acyl hydrazides to deliver the 2,5-disubstituted oxadiazole directly, avoiding a 1,2-diacyl hydrazide intermediate. Access to new building blocks of oxadiazole-substituted secondary amines is improved by leveraging chiral α-bromo nitroalkane or amino acid hydrazide substrates. The non-dehydrative conditions for oxadiazole synthesis are particularly notable, in contrast to alternatives reliant on highly oxophilic reagents to effect cyclization of unsymmetrical 1,2-diacyl hydrazides. The mild conditions are punctuated by the straightforward removal of co-products by a standard aqueous wash.
Collapse
Affiliation(s)
- Kazuyuki Tokumaru
- Department of Chemistry , Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Jeffrey N Johnston
- Department of Chemistry , Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| |
Collapse
|
34
|
Zhang L, Zhao X, Jing X, Zhang X, Lü S, Luo L, Jia X. Oxidation of sp3 C H bonds in N-alkylhydrazides: Access to 2,5-disubstituted 1,3,4-oxadiazole derivatives. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Erhardt H, Mohr F, Kirsch SF. Synthesis of the 1,3,4-Oxadiazole Core through Thermolysis of Geminal Diazides. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hellmuth Erhardt
- Organic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| | - Fabian Mohr
- Inorganic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| | - Stefan F. Kirsch
- Organic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| |
Collapse
|
36
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Transition Metal-Free Direct CH (Hetero)arylation of Heteroarenes: A Sustainable Methodology to Access (Hetero)aryl-Substituted Heteroarenes. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500799] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Li Z, Wang L. Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,3,4-Oxadiazoles using Chloroform as the Carbon Monoxide Source. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Cao J, Wang L. Organocatalytic Oxidative Amidation of Aldehydes with Tetrazoles to Construct 2,5-Diaryl 1,3,4-Oxadiazoles. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Mondal B, Roy B. Di-tert-butyl peroxide (DTBP) promoted dehydrogenative coupling: an expedient and metal-free synthesis of oxindoles via intramolecular C(sp2)–H and C(sp3)–H bond activation. RSC Adv 2015. [DOI: 10.1039/c5ra09055e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient di-tert-butyl peroxide (DTBP) promoted synthesis of oxindole has been developed. This methodology involves C(sp3)–H and C(sp2)–H bond activation under metal-free conditions.
Collapse
Affiliation(s)
- Biplab Mondal
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
| | - Brindaban Roy
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
| |
Collapse
|