1
|
Li S, Zhao W, Wang L, Jia Y, Cui Q, Wen B, Chen X. Controllable Selective Oxidation of Anilines to Azoxybenzenes and Nitrobenzenes by Regulating the Base. ACS OMEGA 2024; 9:39715-39723. [PMID: 39346814 PMCID: PMC11425625 DOI: 10.1021/acsomega.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
The importance of selectively oxidizing aniline into value-added chemicals azoxybenzene and nitrobenzene is well-recognized in organic synthesis. However, the lack of control over selectivity and the complex synthesis of costly catalysts significantly hinder these reactions' industrial applications. In this work, an environmentally friendly approach was developed for the selective oxidization of substituted anilines. This method involves adjusting the strength of alkalinity with peroxide as the oxidant, without the addition of any metals or additives. A mild base (NaF) facilitated azoxybenzene formation, while a stronger base (NaOMe) enabled the synthesis of nitroaromatics. These protocols are user-friendly and scalable, accommodating various substitution patterns and functional groups, yielding products with high to excellent yields. The findings of this work present a framework for investigating base catalysis in organic synthesis and provide a viable and effective approach for selectively oxidizing aniline.
Collapse
Affiliation(s)
- Shiyun Li
- College
of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan
Innovation Laboratory, Quanzhou 362801, China
| | - Wei Zhao
- College
of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lulu Wang
- College
of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yixiong Jia
- College
of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qingyan Cui
- College
of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bin Wen
- Qingyuan
Innovation Laboratory, Quanzhou 362801, China
| | - Xingquan Chen
- Qingyuan
Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
2
|
Dahiya A, Gevondian AG, Selmani A, Schoenebeck F. Site-Selective Nitration of Aryl Germanes at Room Temperature. Org Lett 2023; 25:7209-7213. [PMID: 37751597 PMCID: PMC11325643 DOI: 10.1021/acs.orglett.3c02822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
We report a site-selective ipso-nitration of aryl germanes in the presence of boronic esters, silanes, halogens, and additional functionalities. The protocol is characterized by operational simplicity, proceeds at room temperature, and is enabled by [Ru(bpy)3](PF6)2/blue light photocatalysis. Owing to the exquisite robustness of the [Ge] functionality, nitrations of alternative functional handles in the presence of the germane are also feasible, as showcased herein.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Avetik G Gevondian
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Dey S, Panja D, Sau A, Thakur SD, Kundu S. Reusable Cobalt-Catalyzed Selective Transfer Hydrogenation of Azoarenes and Nitroarenes. J Org Chem 2023. [PMID: 37390049 DOI: 10.1021/acs.joc.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Herein, control transfer hydrogenation (TH) of azoarenes to hydrazo compounds is established employing easy-to-synthesize reusable cobalt catalyst using lower amounts of N2H4·H2O under mild conditions. With this effective methodology, a library of symmetrical and unsymmetrical azoarene derivatives was successfully converted to their corresponding hydrazo derivatives. Further, this protocol was extended to the TH of nitroarenes to amines with good-to-excellent yields. Several kinetic studies along with Hammett studies were carried out to understand the plausible mechanism and the electronic effects in this transformation. This inexpensive catalyst can be recycled up to five times without considerable loss of catalytic activity.
Collapse
Affiliation(s)
- Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anirban Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Seema D Thakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Pomikło D, Bodzioch A, Kaszyński P. 3-Substituted Blatter Radicals: Cyclization of N-Arylguanidines and N-Arylamidines to Benzo[ e][1,2,4]triazines and PhLi Addition. J Org Chem 2023; 88:2999-3011. [PMID: 36802654 PMCID: PMC9990070 DOI: 10.1021/acs.joc.2c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A series of 3-amino- and 3-alkyl-substituted 1-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yls was prepared in four steps involving N-arylation, cyclization of N-arylguanidines and N-arylamidines, reduction of the resulting N-oxides to benzo[e][1,2,4]triazines, and subsequent addition of PhLi followed by aerial oxidation. The resulting seven C(3)-substituted benzo[e][1,2,4]triazin-4-yls were analyzed by spectroscopic and electrochemical methods augmented with density functional theory (DFT) methods. Electrochemical data were compared to DFT results and correlated with substituent parameters.
Collapse
Affiliation(s)
- Dominika Pomikło
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | - Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | - Piotr Kaszyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.,Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland.,Department of Chemistry, Middle Tennessee State University, 37132 Murfreesboro, Tennessee, United States
| |
Collapse
|
5
|
Du Y, Jiang B, Han G. A Facile Highly Selective Anti‐Markovnikov Hydroamination of Vinyl Pyridines by Free Radical Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yue‐Yue Du
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Bo Jiang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Guo‐Zhi Han
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| |
Collapse
|
6
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Catalytic chemo and homoselective ipso-nitration under mild condition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zhang Z, Chu Q, Sun Y, Wang H, Lu D, Liu Y, Xiao H, Wang P, Cui H, Wang M. Green Synthesis of 2‐Nitropropane via Ammoximation‐Oxidation over Organic Base Modified TS‐1 Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiqiang Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Qingyan Chu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Yuan Sun
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Hao Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Deming Lu
- Shandong Qilu Petrochemical Engineering Co. Ltd No.171, Huangong Road, Linzi Zibo 255400 China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| | - Ming Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China
| |
Collapse
|
8
|
Abstract
Nitro compounds are an important class of organic molecules with broad application in organic synthesis, medicinal chemistry, and materials science. Among the variety of methodologies available for their synthesis, the direct oxidation of primary amines represents an attractive alternative route. Efforts towards the development of oxidative procedures for the synthesis of nitro derivatives have spanned over the past decades, leading to a wide variety of protocols for the selective oxidative conversion of amines to nitro derivatives. Methods for the synthesis of nitroarenes via oxidation of aryl amines, with particular emphasis on recent advances in the field, are summarised in this review.
Collapse
|
9
|
Daikopoulou V, Skliri E, Koutsouroubi ED, Armatas GS, Lykakis IN. Selective Mild Oxidation of Anilines into Nitroarenes by Catalytic Activation of Mesoporous Frameworks Linked with Gold-Loaded Mn 3 O 4 Nanoparticles. Chempluschem 2021; 87:e202100413. [PMID: 34709733 DOI: 10.1002/cplu.202100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Indexed: 11/10/2022]
Abstract
This work reports the synthesis and catalytic application of mesoporous Au-loaded Mn3 O4 nanoparticle assemblies (MNAs) with different Au contents, i. e., 0.2, 0.5 and 1 wt %, towards the selective oxidation of anilines into the corresponding nitroarenes. Among common oxidants, as well as several supported gold nanoparticle platforms, Au/Mn3 O4 MNAs containing 0.5 wt % Au with an average particle size of 3-4 nm show the best catalytic performance in the presence of tert-butyl hydroperoxide (TBHP) as a mild oxidant. In all cases, the corresponding nitroarenes were isolated in high to excellent yields (85-97 %) and selectivity (>98 %) from acetonitrile or greener solvents, such as ethyl acetate, after simple flash chromatography purification. The 0.5 % Au/Mn3 O4 catalyst can be isolated and reused four times without a significant loss of its activity and can be applied successfully to a lab-scale reaction of p-toluidine (1 mmol) leading to the p-nitrotulene in 83 % yield. The presence of AuNPs on the Mn3 O4 surface enhances the catalytic activity for the formation of the desired nitroarene. A reasonable mechanism was proposed including the plausible formation of two intermediates, the corresponding N-aryl hydroxylamine and the nitrosoarene.
Collapse
Affiliation(s)
- Vassiliki Daikopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Euaggelia Skliri
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Eirini D Koutsouroubi
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
10
|
Ramavath V, Rupanawar BD, More SG, Bansode AH, Suryavanshi G. Hypervalent iodine( iii) induced oxidative olefination of benzylamines using Wittig reagents. NEW J CHEM 2021. [DOI: 10.1039/d1nj01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed hypervalent iodine mediated oxidative olefination of 1° and 2° amines using 2C-Wittig reagents for the synthesis of α,β-unsaturated esters.
Collapse
Affiliation(s)
- Vijayalakshmi Ramavath
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bapurao D. Rupanawar
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Satish G. More
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ajay H. Bansode
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
11
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (−)‐Minovincine and (−)‐Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Péter Angyal
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Gábor Martin
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Orsolya Egyed
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| |
Collapse
|
12
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (-)-Minovincine and (-)-Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020; 59:13547-13551. [PMID: 32351014 PMCID: PMC7497198 DOI: 10.1002/anie.202004769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 12/31/2022]
Abstract
We report 8‐step syntheses of (−)‐minovincine and (−)‐aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta‐ and hexacyclic frameworks. These cascade transformations included organocatalytic Michael‐aldol condensation, a multistep anionic Michael‐SN2 cascade reaction, and Mannich reaction interrupted Fischer indolization. To streamline the synthetic routes, we also investigated the deliberate use of steric effect to secure various chemo‐ and regioselective transformations.
Collapse
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Gábor Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Orsolya Egyed
- Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary.,Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| |
Collapse
|
13
|
Wan WX, Chen Y, Zhang J, Shen F, Luo L, Deng SH, Xiao H, Zhou W, Deng OP, Yang H, Xiao YL, Huang CR, Tian D, He JS, Wang YJ. Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB. Toxicol In Vitro 2019; 58:13-25. [PMID: 30878698 DOI: 10.1016/j.tiv.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of human mortality around the globe. In this study, mechanism-based SAR (Structure-Activity Relationship) was employed to investigate the carcinogenicity of aromatic amines and nitroaromatics based on CPDB. Principal component analysis and cluster analysis were used to construct the SAR model. Principle component analysis generated three principal components from 12 mechanism-based descriptors. The extracted principal components were later used for cluster analysis, which divided the selected 55 chemicals into six clusters. The three principal components were proposed to describe the "transport", "reactivity" and "electrophilicity" properties of the chemicals. Cluster analysis indicated that the relevant "transport" properties positively correlated with the carcinogenic potential and were contributing factors in determining the carcinogenicity of the studied chemicals. The mechanism-based SAR analysis suggested the electron donating groups, electron withdrawing groups and planarity are significant factors in determining the carcinogenic potency for studied aromatic compounds. The present study may provide insights into the relationship between the three proposed properties and the carcinogenesis of aromatic amines and nitroaromatics.
Collapse
Affiliation(s)
- Wen-Xin Wan
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Yi Chen
- Environmental Monitoring Center of Chengdu, Sichuan province, Chengdu, 610041, Sichuan, China
| | - Jing Zhang
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610056, Sichuan province, China.
| | - Fei Shen
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Ling Luo
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Shi-Huai Deng
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Hong Xiao
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Wei Zhou
- College of Resource, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Ou-Ping Deng
- College of Resource, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Yin-Long Xiao
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China
| | - Chu-Rui Huang
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China
| | - Dong Tian
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Jin-Song He
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Ying-Jun Wang
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| |
Collapse
|
14
|
Xie DX, Yu HJ, Liu H, Xue WC, Qin YS, Shao G. Sodium persulfate-promoted site-selective synthesis of mononitroarylamines under transition-metal-free conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
An D, Song W, Peng Z, Zhang Y, Dong W. Transition‐Metal‐Free Hypervalent Iodine(III) Reagent‐Promoted Site‐Selective Solid‐Phase Synthesis of Mononitroarylamines. ChemistrySelect 2018. [DOI: 10.1002/slct.201801783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Delie An
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Lushan Rd. 2, Changsha 410082, Hunan Province P.R.China
| | - Wenkang Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Lushan Rd. 2, Changsha 410082, Hunan Province P.R.China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Lushan Rd. 2, Changsha 410082, Hunan Province P.R.China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357) Sunshine Lake Pharma Co., Ltd Zhenan Rd. 368 Dongguan, 523871, Guangdong Province P.R. China
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Lushan Rd. 2, Changsha 410082, Hunan Province P.R.China
| |
Collapse
|
16
|
Gayakwad EM, Patel KP, Shankarling GS. Nonanebis (peroxoic acid)-Mediated Transition-Metal-Free Approach for N-Oxide Synthesis. ChemistrySelect 2018. [DOI: 10.1002/slct.201800972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eknath M. Gayakwad
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| | - Khushbu P. Patel
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| | - Ganapati S. Shankarling
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| |
Collapse
|
17
|
Pedron J, Boudot C, Hutter S, Bourgeade-Delmas S, Stigliani JL, Sournia-Saquet A, Moreau A, Boutet-Robinet E, Paloque L, Mothes E, Laget M, Vendier L, Pratviel G, Wyllie S, Fairlamb A, Azas N, Courtioux B, Valentin A, Verhaeghe P. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. Eur J Med Chem 2018; 155:135-152. [PMID: 29885575 DOI: 10.1016/j.ejmech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.
Collapse
Affiliation(s)
- Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | | | | | | | - Alain Moreau
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Michèle Laget
- UMR MD1, U1261, AMU, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Laure Vendier
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Nadine Azas
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse, France
| | | |
Collapse
|
18
|
Chu Q, He G, Xi Y, Wang P, Yu H, Liu R, Zhu H. Green synthesis of low-carbon chain nitroalkanes via a novel tandem reaction of ketones catalyzed by TS-1. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Zarei M, Noroozizadeh E, Moosavi-Zare AR, Zolfigol MA. Synthesis of Nitroolefins and Nitroarenes under Mild Conditions. J Org Chem 2018; 83:3645-3650. [DOI: 10.1021/acs.joc.7b03289] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ehsan Noroozizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | | | - Mohammad A. Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
20
|
Bansode AH, Suryavanshi G. Metal-free hypervalent iodine/TEMPO mediated oxidation of amines and mechanistic insight into the reaction pathways. RSC Adv 2018; 8:32055-32062. [PMID: 35547530 PMCID: PMC9086218 DOI: 10.1039/c8ra07451h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023] Open
Abstract
A highly efficient metal free approach for the oxidation of primary and secondary amines to their corresponding aldehydes and ketones using PhI(OAc)2 in combination with a catalytic amount of TEMPO as an oxidizing agent is described. This protocol is rapid and provides diverse products under milder reaction conditions in excellent yields. In addition, the mechanistic study is well demonstrated by spectroscopic methods. A highly efficient, metal free rapid protocol studied mechanistically the oxidation of primary and secondary amines to their corresponding carbonyl compounds using PhI(OAc)2 and catalytic TEMPO to provide diverse products in excellent yields.![]()
Collapse
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
21
|
Gayakwad EM, Patil VV, Patel KP, Shankarling GS. [Amberlyst-15 - (4Na 2
SO 4
-2H 2
O 2
-NaCl) Adduct]: Direct Access to Synthesize Acylureas via Oxidative Amidation of Aldehyde. ChemistrySelect 2017. [DOI: 10.1002/slct.201701650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eknath M. Gayakwad
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| | - Vilas V. Patil
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| | - Khushbu P. Patel
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| | - Ganapati S. Shankarling
- Department of Dyestuff Technology; Institute of Chemical Technology, Matunga; Mumbai 400 019 India
| |
Collapse
|
22
|
Shao Y, Zheng H, Wu Z, Huang L, Tong J, Wu M, Sun X. NH4I/tert-Butyl Hydroperoxide-Promoted Oxidative C–N Cleavage of Tertiary Amines Leading to Nitroaromatic Compounds. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15022797727991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A NH4I/ tert-butyl hydroperoxide-promoted oxidation of tertiary N-aryl- N,N-dialkylamines in DMSO has been developed to access nitroaromatic compounds. This methodology involves sequential N-dealkylation reactions in one-pot and a radical pathway is proposed.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Hao Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Zhuhong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Lei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Jingjing Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Ming Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou 213164, P.R. China
| |
Collapse
|
23
|
Gaspa S, Porcheddu A, Valentoni A, Garroni S, Enzo S, De Luca L. A Mechanochemical-Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche; Università degli Studi di Cagliari; Cittadella Universitaria 09042 Monserrato Italy
| | - Antonio Valentoni
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Sebastiano Garroni
- International Research Centre in Critical Raw Materials-ICCRAM; University of Burgos; Plaza Misael Banuelos s/n 09001 Burgos Spain
- Advanced Materials; Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154, University of Burgos; Hospital del Rey s/n 09001 Burgos Spain
| | - Stefano Enzo
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| |
Collapse
|
24
|
Kumar Y, Jaiswal Y, Shaw M, Kumar A. Metal-Free Catalyst-Controlled Chemoselective Synthesis of Aryl α
-Ketoesters and Primary α
-Ketoamides from Aryl Acetimidates. ChemistrySelect 2017. [DOI: 10.1002/slct.201701322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry; Indian Institute of Technology Patna, Bihta; 801103 Bihar India
| | - Yogesh Jaiswal
- Department of Chemistry; Indian Institute of Technology Patna, Bihta; 801103 Bihar India
| | - Mukta Shaw
- Department of Chemistry; Indian Institute of Technology Patna, Bihta; 801103 Bihar India
| | - Amit Kumar
- Department of Chemistry; Indian Institute of Technology Patna, Bihta; 801103 Bihar India
| |
Collapse
|
25
|
Patil VV, Gayakwad EM, Patel KP, Shankarling GS. Efficient, facile metal free protocols for the bromination of commercially important deactivated aminoanthracene-9,10-diones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Arcadi A, Chiarini M, Del Vecchio L, Marinelli F, Michelet V. Sequential Silver‐Catalyzed Oxidative Cyclization Reactions of Unprotected 2‐Alkynylanilines to Anthranils. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
| | - Marco Chiarini
- Facoltà di Bioscienze e Tecnologie Agro‐Alimentari e Ambientali Università di Teramo Via R. Balzarini 1 64100 Teramo (Te) Italy
| | - Luana Del Vecchio
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
- PSL Research University ChimieParisTech‐CNRS Institut de Recherche de Chimie Paris 11 Rue P&M Curie 75005 Paris France
| | - Fabio Marinelli
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
| | - Véronique Michelet
- PSL Research University ChimieParisTech‐CNRS Institut de Recherche de Chimie Paris 11 Rue P&M Curie 75005 Paris France
| |
Collapse
|
27
|
Gayakwad EM, Patil VV, Shankarling GS. Amberlyst-15 catalysed oxidative esterification of aldehydes using a H2O2 trapped oxidant as a terminal oxidant. NEW J CHEM 2017. [DOI: 10.1039/c6nj03831j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient method has been developed for the selective oxidative esterification of aldehydes using commercially available Amberlyst-15 as a catalyst.
Collapse
Affiliation(s)
- Eknath M. Gayakwad
- Institute of Chemical Technology
- Department of Dyestuff Technology
- Mumbai
- India
| | - Vilas V. Patil
- Institute of Chemical Technology
- Department of Dyestuff Technology
- Mumbai
- India
| | | |
Collapse
|
28
|
Patil VV, Gayakwad EM, Shankarling GS. m-CPBA Mediated Metal Free, Rapid Oxidation of Aliphatic Amines to Oximes. J Org Chem 2016; 81:781-6. [DOI: 10.1021/acs.joc.5b01740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vilas V. Patil
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, India
| | - Eknath M. Gayakwad
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, India
| | - Ganapati S. Shankarling
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
29
|
Gayakwad EM, Patil VV, Shankarling GS. Nonanebis(peroxoic acid) mediated efficient and selective oxidation of sulfide. NEW J CHEM 2016. [DOI: 10.1039/c5nj02616d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metal free, chemoselective oxidation of sulfide using aliphatic diperoxyacid.
Collapse
Affiliation(s)
- Eknath M. Gayakwad
- Institute of Chemical Technology
- Department of Dyestuff Technology
- Mumbai
- India
| | - Vilas V. Patil
- Institute of Chemical Technology
- Department of Dyestuff Technology
- Mumbai
- India
| | | |
Collapse
|
30
|
Zhu X, Qiao L, Ye P, Ying B, Xu J, Shen C, Zhang P. Copper-catalyzed rapid C–H nitration of 8-aminoquinolines by using sodium nitrite as the nitro source under mild conditions. RSC Adv 2016. [DOI: 10.1039/c6ra19583k] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the first example of copper(ii) catalyzed remote C–H nitration of 8-aminoquinoline amides by using sodium nitrite as nitration reagent under mild conditions in 1 minute which undergoes single electron process.
Collapse
Affiliation(s)
- Xiaolei Zhu
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Pingping Ye
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Beibei Ying
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Chao Shen
- College of Biology and Environmental Engineering
- Zhejiang Shuren University
- Hangzhou 310015
- China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|