1
|
Patil DV, Lee Y, Kim HY, Oh K. Visible-Light-Promoted Photoaddition of N-Nitrosopiperidines to Alkynes: Continuous Flow Chemistry Approach to Tetrahydroimidazo[1,2- a]pyridine 1-Oxides. Org Lett 2022; 24:5840-5844. [PMID: 35921551 DOI: 10.1021/acs.orglett.2c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoaddition of N-nitrosopiperidines to terminal alkynes was effected under visible-light irradiation, in which a novel synthetic access to tetrahydroimidazo[1,2-a]pyridine 1-oxides was achieved via the dehydrogenative cycloisomerization of β-nitroso enamine intermediates. The decomposition pathways of N-nitrosamines, alkynes, and β-nitroso enamine intermediates were better handled in a continuous flow setting through the diffusion control of chemical species that negatively affected the formation of tetrahydroimidazo[1,2-a]pyridine 1-oxides under batch reaction conditions.
Collapse
Affiliation(s)
- Dilip V Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Yulim Lee
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Borths CJ, Burns M, Curran T, Ide ND. Nitrosamine Reactivity: A Survey of Reactions and Purge Processes. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Borths
- Drug Substance Technologies, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Burns
- Lhasa Limited, Leeds, West Yorkshire, U.K., LS11 5PS
| | - Timothy Curran
- Vertex Pharmaceuticals, Inc., 50 Northern Avenue, Boston, Massachusetts 01757, United States
| | - Nathan D. Ide
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Patil DV, Si T, Kim HY, Oh K. Visible-Light-Induced Photoaddition of N-Nitrosoalkylamines to Alkenes: One-Pot Tandem Approach to 1,2-Diamination of Alkenes from Secondary Amines. Org Lett 2021; 23:3105-3109. [PMID: 33792333 DOI: 10.1021/acs.orglett.1c00786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The generation of aminium radical cation species from N-nitrosoamines is disclosed for the first time through visible-light excitation at 453 nm. The developed visible-light-promoted photoaddition reaction of N-nitrosoamines to alkenes was combined with the o-NQ-catalyzed aerobic oxidation protocol of amines to telescope the direct handling of harmful N-nitroso compounds, where the desired α-amino oxime derivatives were obtained in a one-pot tandem N-nitrosation and photoaddition sequence.
Collapse
Affiliation(s)
- Dilip V Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Beard JC, Swager TM. An Organic Chemist's Guide to N-Nitrosamines: Their Structure, Reactivity, and Role as Contaminants. J Org Chem 2021; 86:2037-2057. [PMID: 33474939 DOI: 10.1021/acs.joc.0c02774] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-Nitrosamines are a class of compounds notorious both for the potent carcinogenicity of many of its members and for their widespread occurrence throughout the human environment, from air and water to our diets and drugs. Considerable effort has been dedicated to understanding N-nitrosamines as contaminants, and methods for their prevention, remediation, and detection are ongoing challenges. Understanding the chemistry of N-nitrosamines will be key to addressing these challenges. To facilitate such understanding, we focus in this Perspective on the structure, reactivity, and synthetic applications of N-nitrosamines with an emphasis on alkyl N-nitrosamines. The role of N-nitrosamines as water contaminants and the methods for their detection are also discussed.
Collapse
Affiliation(s)
- Jessica C Beard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Mathew JP, Greer A. Cyanine Modification Tuned for Amine Photorelease. Photochem Photobiol 2019; 95:1280-1282. [PMID: 30927440 DOI: 10.1111/php.13102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Cyanines are emerging as useful agents for photoreleasing biological compounds because of their capability of utilizing near-infrared (NIR) light. Another benefit is their ability to self-sensitize to produce singlet oxygen for the release of aryl amines, a process that has not been as feasible in the past. Here, we highlight the paper by Schnermann et al. (https://doi.org/10.1111/php.13090), which reports on a cyanine conjugate for heterolytic photocleavage of aryl amines. This paper is timely-delving into a photorelease mechanism involving a domino rearrangement and β-elimination triggered by NIR light.
Collapse
Affiliation(s)
- Joel P Mathew
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
6
|
Greer EM, Kwon K. Density Functional Theory and
ab Initio
Computational Evidence for Nitrosamine Photoperoxides: Hammett Substituent Effects in the Photogeneration of the Nitrooxide Intermediate. Photochem Photobiol 2018; 94:975-984. [DOI: 10.1111/php.12941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Edyta M. Greer
- Department of Natural Sciences Baruch College City University of New York New York NY
| | - Kitae Kwon
- Department of Natural Sciences Baruch College City University of New York New York NY
| |
Collapse
|
7
|
Ghogare AA, Debaz CJ, Silva Oliveira M, Abramova I, Mohapatra PP, Kwon K, Greer EM, Prado FM, Valerio HP, Di Mascio P, Greer A. Experimental and DFT Computational Insight into Nitrosamine Photochemistry—Oxygen Matters. J Phys Chem A 2017; 121:5954-5966. [DOI: 10.1021/acs.jpca.7b02414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashwini A. Ghogare
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ciro J. Debaz
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Marilene Silva Oliveira
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Inna Abramova
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Prabhu P. Mohapatra
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Kitae Kwon
- Department
of Natural Sciences, Baruch College, City University of New York, New York 10010, United States
| | - Edyta M. Greer
- Department
of Natural Sciences, Baruch College, City University of New York, New York 10010, United States
| | - Fernanda Manso Prado
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Hellen Paula Valerio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|