1
|
Gaston JJ, Tague AJ, Smyth JE, Butler NM, Willis AC, van Eikema Hommes N, Yu H, Clark T, Keller PA. The Detosylation of Chiral 1,2-Bis(tosylamides). J Org Chem 2021; 86:9163-9180. [PMID: 34153182 DOI: 10.1021/acs.joc.1c00359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The deprotection of chiral 1,2-bis(tosylamides) to their corresponding 1,2-diamines is mostly unsuccessful under standard conditions. In a new methodology, the use of Mg/MeOH with sufficient steric additions allows the facile synthesis of 1,2-diamines in 78-98% yields. These results are rationalized using density functional theory and the examination of inner and outer-sphere reduction mechanisms.
Collapse
Affiliation(s)
- Jayden J Gaston
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jamie E Smyth
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nicholas M Butler
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Anthony C Willis
- School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Nico van Eikema Hommes
- Computer Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Timothy Clark
- Computer Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Casnati A, Perrone A, Mazzeo PP, Bacchi A, Mancuso R, Gabriele B, Maggi R, Maestri G, Motti E, Stirling A, Ca' ND. Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J Org Chem 2019; 84:3477-3490. [PMID: 30788963 DOI: 10.1021/acs.joc.9b00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first organo-catalyzed synthesis of imidazolidin-2-ones and imidazol-2-ones via intramolecular hydroamidation of propargylic ureas is reported. The phosphazene base BEMP turned out to be the most active organo-catalyst compared with guanidine and amidine bases. Excellent chemo- and regioselectivities to five-membered cyclic ureas have been achieved under ambient conditions, with a wide substrate scope and exceptionally short reaction times (down to 1 min). A base-mediated isomerization step to an allenamide intermediate is the most feasible reaction pathway to give imidazol-2-ones, as suggested by DFT studies.
Collapse
Affiliation(s)
- Alessandra Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Antonio Perrone
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Paolo P Mazzeo
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Alessia Bacchi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Raffaella Mancuso
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Bartolo Gabriele
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Elena Motti
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - András Stirling
- Theoretical Chemistry Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nicola Della Ca'
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| |
Collapse
|
3
|
Akhtar R, Naqvi SAR, Zahoor AF, Saleem S. Nucleophilic ring opening reactions of aziridines. Mol Divers 2018; 22:447-501. [PMID: 29728870 DOI: 10.1007/s11030-018-9829-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013-2017 for aziridine ring opening reactions as well as their synthetic applications is described.
Collapse
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sameera Saleem
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
4
|
Butler NM, Hendra R, Bremner JB, Willis AC, Lucantoni L, Avery VM, Keller PA. Cascade reactions of indigo with oxiranes and aziridines: efficient access to dihydropyrazinodiindoles and spiro-oxazocinodiindoles. Org Biomol Chem 2018; 16:6006-6016. [DOI: 10.1039/c8ob00865e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cascade reactions of indigo with strained electrophiles affords access to previously unknown oxazocino, pyrazino, and diazepino diindoles with selective anti-plasmodial activity.
Collapse
Affiliation(s)
| | - Rudi Hendra
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - John B. Bremner
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Anthony C. Willis
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Leonardo Lucantoni
- Eskitis Institute for Drug Discovery
- Griffith University
- Nathan 4111
- Australia
| | - Vicky M. Avery
- Eskitis Institute for Drug Discovery
- Griffith University
- Nathan 4111
- Australia
| | - Paul A. Keller
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
5
|
Marchegiani M, Nodari M, Tansini F, Massera C, Mancuso R, Gabriele B, Costa M, Della Ca’ N. Urea derivatives from carbon dioxide and amines by guanidine catalysis: Easy access to imidazolidin-2-ones under solvent-free conditions. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Mwenda ET, Nguyen HM. Enantioselective Synthesis of 1,2-Diamines Containing Tertiary and Quaternary Centers through Rhodium-Catalyzed DYKAT of Racemic Allylic Trichloroacetimidates. Org Lett 2017; 19:4814-4817. [PMID: 28876951 DOI: 10.1021/acs.orglett.7b02256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amination of racemic secondary and tertiary allylic trichloroacetimidates possessing β-nitrogen substituents and proximal nitrogen-containing heterocycles, via chiral diene-ligated rhodium-catalyzed dynamic kinetic asymmetric transformations (DYKAT), provides branched allylic 1,2-diamines with high enantioselectivity. The catalytic system can be applied to the synthesis of 1,2-diamines possessing two contiguous stereocenters with excellent diastereoselectivity. Furthermore, the nitrogen-containing heterocycles suppress competing vinyl azirdine formation, allowing for the high enantioselective syntheses of 1,2-diamines possessing tertiary and quaternary centers.
Collapse
Affiliation(s)
- Edward T Mwenda
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| |
Collapse
|
7
|
Liu M, Liu Y, Hua X, Wu C, Zhou S, Wang B, Li Z. Synthesis of Osthole Derivatives with Grignard Reagents and Their Larvicidal Activities on Mosquitoes. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|