1
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
2
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Ditmangklo B, Sittiwong W, Boddaert T, Vilaivan T, Aitken DJ. Pyrrolidinyl peptide nucleic acids bearing hydroxy-modified cyclobutane building blocks: Synthesis and binding properties. Biopolymers 2021; 112:e23459. [PMID: 34101824 DOI: 10.1002/bip.23459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
The conformationally constrained pyrrolidinyl PNA with a dipeptide consisting of an alternating nucleobase-modified D-proline and a cyclic β-amino acid "spacer" exhibited improved nucleic acid binding properties compared to the original PNA. The pyrrolidinyl PNA with the four-membered ring spacer (1S,2S)-2-aminocyclobutanecarboxylic acid (acbcPNA) are among the best performed members of the pyrrolidinyl PNA family. However, these PNA suffer some limitations such as aqueous solubility and non-specific interactions due to their extreme hydrophobicity. In the present work, a hydroxy group is introduced onto the cyclobutane ring spacer of the acbcPNA with the aim of decreasing its hydrophobicity. To this end, a Fmoc/tBu ether-protected 4-hydroxy-2-aminocyclobutanecarboxylic acid building block was synthesized and resolved by chiral HPLC. Each enantiomer was used to synthesize the hydroxy-modified acbcPNA employing Fmoc solid-phase peptide synthesis. DNA/RNA binding studies indicated that the introduction of the hydroxy group to the acbcPNA decreases the binding affinity toward complementary DNA and RNA while maintaining the sequence and directional specificity of unmodified acbcPNA. The hydrophobicity of the hydroxy-modified acbcPNA decreased with the number of hydroxy groups added as indicated by the decrease in the logP values. Only two modifications were sufficient to decrease the logP by an order of magnitude without excessively lowering the binding affinity nor the specificity. This work thus demonstrated that the specific structural modifications for this type of PNA model can be performed in a modular fashion, which paves the way toward the future realization of improving hydrophilicity and nucleic acid binding affinity as well as specificity.
Collapse
Affiliation(s)
- Boonsong Ditmangklo
- Department of Chemistry, Faculty of Science, Organic Synthesis Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Wantanee Sittiwong
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Pathum Thani, Thailand
| | | | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Organic Synthesis Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Buntasana S, Seankongsuk P, Vilaivan T, Padungros P. Household Ozone Disinfector as An Alternative Ozone Generator for Ozonolysis of Alkenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Pattarakiat Seankongsuk
- Organic Synthesis Research Unit Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
5
|
Ratthachag T, Buntasana S, Vilaivan T, Padungros P. Surfactant-mediated thioglycosylation of 1-hydroxy sugars in water. Org Biomol Chem 2021; 19:822-836. [PMID: 33403378 DOI: 10.1039/d0ob02246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioglycosides are an important class of sugars, since they can be used as non-ionic biosurfactants, biomimetic glycosides, and building blocks for carbohydrate synthesis. Previously, Brønsted- or Lewis-acid-catalyzed dehydrative glycosylations between a 1-hydroxy sugar and a thiol have been reported to yield open-chain dithioacetal sugars as the major products instead of the desired thioglycosides. These dithioacetal sugars are by-products derived from the endocyclic bond cleavage of the thioglycosides. Herein, we report dehydrative glycosylation in water mediated by a Brønsted acid-surfactant combined catalyst (BASC). Glycosylations between 1-hydroxy furanosyl/pyranosyl sugars and primary, secondary, and tertiary aliphatic/aromatic thiols in the presence of dodecyl benzenesulfonic acid (DBSA) provided the thioglycoside products in moderate to good yields. Microwave irradiation led to improvements in the yields and a shortening of the reaction time. Remarkably, open-chain dithioacetal sugars were not detected in the DBSA-mediated glycosylations in water. This method is a simple, convenient, and rapid approach to produce a library of thioglycosides without the requirement of anhydrous conditions. Moreover, this work also provides an excellent example of complementary reactivity profiles of glycosylation in organic solvents and water.
Collapse
Affiliation(s)
- Trichada Ratthachag
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Hibino M, Aiba Y, Shoji O. Cationic guanine: positively charged nucleobase with improved DNA affinity inhibits self-duplex formation. Chem Commun (Camb) 2020; 56:2546-2549. [PMID: 32040115 DOI: 10.1039/d0cc00169d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligonucleotides represent powerful DNA-recognition tools, but the formation of undesirable "self-duplexes" becomes more probable with increasing DNA affinity. Herein, we have developed a modified nucleobase with "self-avoiding" properties. Facile methylation of guanine yields a cationic N7-methylguanine, which suppresses the formation of self-duplexes whilst improving DNA affinity through electrostatic interaction.
Collapse
Affiliation(s)
- Masaki Hibino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
7
|
Hibino M, Aiba Y, Watanabe Y, Shoji O. Peptide Nucleic Acid Conjugated with Ruthenium-Complex Stabilizing Double-Duplex Invasion Complex Even under Physiological Conditions. Chembiochem 2018; 19:1601-1604. [PMID: 29797750 DOI: 10.1002/cbic.201800256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 02/03/2023]
Abstract
Peptide nucleic acid (PNA) can form a stable duplex with DNA, and, accordingly, directly recognize double-stranded DNA through the formation of a double-duplex invasion complex, wherein a pair of complementary PNA strands form two PNA/DNA duplexes. Because invasion does not require prior denaturation of DNA, PNA holds great potential for in cellulo or in vivo applications. To broaden the applicability of PNA invasion, we developed a new conjugate of PNA with a ruthenium complex. This Ru-PNA conjugate exhibits higher DNA-binding affinity, which results in enhanced invasion efficiency, even under physiological conditions.
Collapse
Affiliation(s)
- Masaki Hibino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
8
|
Insights into the structural features and stability of peptide nucleic acid with a D-prolyl-2-aminocyclopentane carboxylic acid backbone that binds to DNA and RNA. J Mol Graph Model 2018; 84:36-42. [PMID: 29909272 DOI: 10.1016/j.jmgm.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Peptide nucleic acid (PNA) is a powerful biomolecule with a wide variety of important applications. In this work, the molecular structures and binding affinity of PNA with a D-prolyl-2-aminocyclopentane carboxylic acid backbone (acpcPNA) that binds to both DNA and RNA were studied using molecular dynamics simulations. The simulated structures of acpcPNA-DNA and acpcPNA-RNA duplexes more closely resembled the typical structures of B-DNA and A-RNA than the corresponding duplexes of aegPNA. The calculated binding free energies are in good agreement with the experimental results that the acpcPNA-DNA duplex is more stable than the acpcPNA-RNA duplex regardless of the base sequences. The results provide further insights in the relationship between structure and stability of this unique PNA system.
Collapse
|
9
|
Pansuwan H, Ditmangklo B, Vilaivan C, Jiangchareon B, Pan-In P, Wanichwecharungruang S, Palaga T, Nuanyai T, Suparpprom C, Vilaivan T. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains. Bioconjug Chem 2017; 28:2284-2292. [PMID: 28704609 DOI: 10.1021/acs.bioconjchem.7b00308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH2, and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense and antigene therapy.
Collapse
Affiliation(s)
- Haruthai Pansuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | | | | | | | | | | | | - Thanesuan Nuanyai
- Rajamankala University of Technology Rattanakosin , Wang Klai Kangwon Campus, Huahin, Prachuap Khiri Khan 77110, Thailand
| | - Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | |
Collapse
|
10
|
Seankongsuk P, Vchirawongkwin V, Bates RW, Padungros P, Vilaivan T. Enantioselective Synthesis of (2S
,3S
)-epi
-Oxetin and Its Incorporation into Conformationally Constrained Pyrrolidinyl PNA with an Oxetane Backbone. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pattarakiat Seankongsuk
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Viwat Vchirawongkwin
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Roderick W. Bates
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Panuwat Padungros
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| |
Collapse
|