1
|
Kleinpeter E, Koch A. Carbones - A Classification on the Magnetic Criterion. Chem Asian J 2024; 19:e202300826. [PMID: 37966046 DOI: 10.1002/asia.202300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Carbones (carbodiphosphoranes, bent allenes and chalcogen-stabilized carbones) bear the same resonance contributor X+ -C2- -Y+ (X+ , Y+ =PR3 + , CR2 + , SR2 + , SeR2 + , S+ R2 =NR) and exhibit unique bonding and donating properties at the central carbon atom. A classification is given on basis of both the geometry and the magnetic properties (13 C chemical shift of the central carbon atom and the spatial magnetic properties, through-space NMR shieldings (TS NMRSs), actually the anisotropy effect or the ring current effect of aromatic species). TS NMRS values have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The synergy of geometry (linear or bent, orthogonal or twisted structures) and NMR characteristics (extend of the high field shift of the central carbon atom, anisotropy effect of the allene-like C=C double bonds or the ball-like anisotropy effect of carbone-like central carbon atom) provides a comprehensive picture of the dominating resonance contributor.
Collapse
Affiliation(s)
- Erich Kleinpeter
- Chemisches Institut der Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam (Golm), Germany
| | - Andreas Koch
- Chemisches Institut der Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam (Golm), Germany
| |
Collapse
|
2
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
3
|
Borthakur B, Ghosh B, Phukan AK. The flourishing chemistry of carbene stabilized compounds of group 13 and 14 elements. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Abstract
Ligands, especially phosphines and carbenes, can play a key role in modifying and controlling homogeneous organometallic catalysts, and they often provide a convenient approach to fine-tuning the performance of known catalysts. The measurable outcomes of such catalyst modifications (yields, rates, selectivity) can be set into context by establishing their relationship to steric and electronic descriptors of ligand properties, and such models can guide the discovery, optimization, and design of catalysts. In this review we present a survey of calculated ligand descriptors, with a particular focus on homogeneous organometallic catalysis. A range of different approaches to calculating steric and electronic parameters are set out and compared, and we have collected descriptors for a range of representative ligand sets, including 30 monodentate phosphorus(III) donor ligands, 23 bidentate P,P-donor ligands, and 30 carbenes, with a view to providing a useful resource for analysis to practitioners. In addition, several case studies of applications of such descriptors, covering both maps and models, have been reviewed, illustrating how descriptor-led studies of catalysis can inform experiments and highlighting good practice for model comparison and evaluation.
Collapse
Affiliation(s)
- Derek J Durand
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Natalie Fey
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| |
Collapse
|
5
|
Affiliation(s)
- Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
6
|
|
7
|
Abstract
Because of the lack of strong π-interaction in their bonds connecting building units, most of the metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) achieved so far are insulators or wide-bandgap semiconductors. The design of metal-like frameworks based on known chemical components is a challenge. This work reports that aryl borons can be linked together through isocyanides to form stable and easily accessible low-dimensional boronic-organic frameworks (BOFs). Particularly, the boron atoms in the BOFs behave like transition metals, forming the combined σ-donation and π-backdonation bonds instead of the usual electron-sharing bonds with the isocyanide linkers. This peculiar bonding endows BOFs with semimetal and narrow-bandgap semiconductor features, which are different from MOFs and COFs and may be found to be useful in future nanoelectronics. The results open a door to integrating the knowledge of the donor-acceptor chemistry in the main group into materials science.
Collapse
Affiliation(s)
- Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
8
|
Morosaki T, Fujii T. Recent Advances in Heteroatom-Stabilized Carbones and Their Metal Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Borthakur B, Silvi B, Dewhurst RD, Phukan AK. Theoretical strategies toward stabilization of singlet remote N-heterocyclic carbenes. J Comput Chem 2016; 37:1484-90. [PMID: 27010516 DOI: 10.1002/jcc.24362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
Abstract
Theoretical investigations predict that the singlet states of ylide-substituted remote carbenes are significantly stable and comparable to those of experimentally known NHCs. They are also found to be strongly σ-donating in nature as evident from an evaluation of the carbonyl stretching frequencies (νCO ) of their complexes with the [Rh(CO)2 Cl] fragment. NICS and QTAIM based bond magnetizability calculations indicate the presence of cyclic electron delocalization in majority of the molecules. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bitupon Borthakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| | - Bernard Silvi
- UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Paris, F-75005, France.,CNRS, UMR 7616, Laboratoire de Chimie Théorique, Paris, F-75005, France
| | - Rian D Dewhurst
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
10
|
Morosaki T, Fujii T. Synthesis of phosphorus- and sulfur-stabilized carbone (Me)Ph2P→C←SPh2(= NMe). PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2015.1114488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tomohito Morosaki
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Takayoshi Fujii
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba, Japan
| |
Collapse
|
11
|
Frenking G, Hermann M, Andrada DM, Holzmann N. Donor–acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C–Sn. Chem Soc Rev 2016; 45:1129-44. [DOI: 10.1039/c5cs00815h] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Donor–acceptor complexes of one, two or three atoms E = B, Si–Sn which are stabilized by σ-donor ligands L are discussed.
Collapse
Affiliation(s)
- Gernot Frenking
- Fachbereich Chemie
- Philipps-Universität Marburg
- Hans-Meerwein-Strasse
- D-35032 Marburg
- Germany
| | - Markus Hermann
- Fachbereich Chemie
- Philipps-Universität Marburg
- Hans-Meerwein-Strasse
- D-35032 Marburg
- Germany
| | - Diego M. Andrada
- Fachbereich Chemie
- Philipps-Universität Marburg
- Hans-Meerwein-Strasse
- D-35032 Marburg
- Germany
| | - Nicole Holzmann
- Fachbereich Chemie
- Philipps-Universität Marburg
- Hans-Meerwein-Strasse
- D-35032 Marburg
- Germany
| |
Collapse
|
12
|
Mattock JD, Vargas A, Dewhurst RD. Identification of a Lead Candidate in the Search for Carbene-Stabilised Homoaromatics. Chemistry 2015; 21:16968-74. [DOI: 10.1002/chem.201501948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/07/2022]
|
13
|
Bharadwaz P, Borthakur B, Phukan AK. Annulated boron substituted N-heterocyclic carbenes: theoretical prediction of highly electrophilic carbenes. Dalton Trans 2015; 44:18656-64. [DOI: 10.1039/c5dt03501e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated boron substituted N-heterocyclic carbenes are found to have significantly enhanced π-accepting ability which is further corroborated by 31P NMR shift calculations of the phosphinidene adducts of these carbenes.
Collapse
Affiliation(s)
- Priyam Bharadwaz
- Department of Chemical Sciences
- Tezpur University
- Napaam 784028
- India
| | | | | |
Collapse
|