1
|
He H, Pan CM, Hou ZW, Sun M, Wang L. Organocatalyzed Photoelectrochemistry for the Generation of Acyl and Phosphoryl Radicals through Hydrogen Atom-Transfer Process. J Org Chem 2024. [PMID: 38761155 DOI: 10.1021/acs.joc.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An organocatalyzed photoelectrochemical method for the generation of acyl and phosphoryl radicals from formamides, aldehydes, and phosphine oxides has been developed. This protocol utilizes 9,10-phenanthrenequinone (PQ) as both a molecular catalyst and a hydrogen atom-transfer (HAT) reagent, eliminating the requirement for external metal-based reagents, HAT reagents, and oxidants. The generated acyl radicals can be applied to a range of radical-mediated transformation reactions, including C-H carbamoylation of heteroarenes, intermolecular tandem radical cyclization of CF3-substituted N-arylacrylamides, as well as intramolecular cyclization reactions. The use of acyl radicals in these transformations offers an efficient and sustainable approach to accessing structurally diverse carbonyl compounds.
Collapse
Affiliation(s)
- Hong He
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Cai-Mi Pan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
2
|
Chen X, Jin L, Wang Y, Yang H, Le Z, Xie Z. Synthesis of fused quinazolinones via visible light induced cyclization of 2-aminobenzaldehydes with tetrahydroisoquinolines. Org Biomol Chem 2023; 21:3863-3870. [PMID: 37093566 DOI: 10.1039/d3ob00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. Moreover, using 2-aminophenone as the substrate and under similar reaction conditions, the same product was obtained when a carbon was removed. The bio-active naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The success of the reaction on the gram-scale and the further transformation of the substrate demonstrated the synthetic practicability of this reaction.
Collapse
Affiliation(s)
- Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yihong Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Hong Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
3
|
Shimizu D, Kurose A, Nishikata T. Remote Nucleophilic Substitution at a C(sp 3)–H Bond of α-Bromocarboxamides via 1,4-Hydrogen Atom Transfer To Access N-Acyl- N, O-acetal Compounds. Org Lett 2022; 24:7873-7877. [DOI: 10.1021/acs.orglett.2c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Shimizu
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Ayako Kurose
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
4
|
Yin X, Yu C, Tuong TML, Kou RW, Yang AA, Chen X, Wang WJ, Gao YQ, Gao JM. Structures of ganorbifates C-I, seven previously undescribed lanostanoids from the mushroom Ganoderma orbiforme, and insights of computed biosynthesis with DFT. PHYTOCHEMISTRY 2022; 194:113004. [PMID: 34837763 DOI: 10.1016/j.phytochem.2021.113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ganorbifates C-I, seven undescribed biosynthetically related polyoxygenated 3,4-seco-27-norlanostanoid congeners, were isolated from the edible mushroom, Ganoderma orbiforme. Ganorbifate C features a unique cyclobutene ring constructed at C19/C11, and both D and E incorporate an unusual cyclopropane ring formed by C-19/C-9 linkage. Their structures, including the absolute configurations, were determined by spectroscopic methods and ECD calculations. The proposed Norrish-Yang cyclization-based key biosynthetic pathway for ganorbifates C-E is revealed by density functional theory (DFT) calculations. The computational studies uncover the formation of both cyclobutene and cyclopropane rings in the isolates and the stereoselectivity centers of these steps are consistent with those in the natural products. All compounds exhibited NO generation inhibition in LPS-induced BV-2 microglial cells, among them ganorbifate C was the most promising one with the IC50 values of 4.37 μM.
Collapse
Affiliation(s)
- Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Chao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Thi M L Tuong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Rong-Wei Kou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - An-An Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen Ji Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yu-Qi Gao
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Dokai Y, Nishizawa T, Saito K, Yamada T. Lewis
Acid‐Mediated Decarboxylative Allylation of Enol Carbonates. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoichi Dokai
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Takuma Nishizawa
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Kodai Saito
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Tohru Yamada
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
7
|
Bromine radical as a visible-light-mediated polarity-reversal catalyst. iScience 2021; 24:102693. [PMID: 34222843 PMCID: PMC8243021 DOI: 10.1016/j.isci.2021.102693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022] Open
Abstract
Polarity-reversal catalysts enable otherwise sluggish or completely ineffective reactions which are characterized by unfavorable polar effects between radicals and substrates. We herein disclose that when irradiated by visible light, bromine can behave as a polarity-reversal catalyst. Hydroacylation of vinyl arenes, a three-component cascade transformation and deuteration of aldehydes were each achieved in a metal-free manner without initiators by using inexpensive N-bromosuccinimide as the precatalyst. Light is essential to generate and maintain the active bromine radical during the reaction process. Another key to success is that HBr can behave as an effective hydrogen donor to turn over the catalytic cycles. Using bromine as a polarity-reversal catalyst to generate acyl radicals Additive- and metal-free, atom- and step-economic, and operationally simple process Using constant light-irradiation to induce and maintain bromine radicals Access carbonyl compounds and deuterated aldehydes with wide substrate scope
Collapse
|
8
|
Fan P, Zhang C, Zhang L, Wang C. Acylation of Aryl Halides and α-Bromo Acetates with Aldehydes Enabled by Nickel/TBADT Cocatalysis. Org Lett 2020; 22:3875-3878. [DOI: 10.1021/acs.orglett.0c01121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chang Zhang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Linchuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Fan P, Zhang C, Lan Y, Lin Z, Zhang L, Wang C. Photocatalytic hydroacylation of trifluoromethyl alkenes. Chem Commun (Camb) 2019; 55:12691-12694. [PMID: 31588452 DOI: 10.1039/c9cc07285c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrofunctionalization of trifluoromethyl alkenes is highly challenging, because the nucleophilic addition is oftentimes followed by β-F elimination in this case. By the use of tetrabutylammonium decatungstate (TBADT) as a hydrogen-atom-transfer (HAT) photocatalyst for acyl C-H activation, we successfully avoid the β-F elimination in the hydroacylation of trifluoromethyl alkenes with aldehydes. This light (390 nm) promoted reaction provides a facile and efficient access to various β-CF3 ketones in complete regiocontrol with high functionality tolerance and 100% atom economy.
Collapse
Affiliation(s)
- Pei Fan
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | - Chang Zhang
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | - Yun Lan
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | - Zhiyang Lin
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | - Linchuan Zhang
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | - Chuan Wang
- National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| |
Collapse
|
10
|
Sideri IK, Voutyritsa E, Kokotos CG. Photochemical Hydroacylation of Michael Acceptors Utilizing an Aldehyde as Photoinitiator. CHEMSUSCHEM 2019; 12:4194-4201. [PMID: 31353792 DOI: 10.1002/cssc.201901725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The hydroacylation of Michael acceptors constitutes a useful tool for the formation of new C-C bonds. In this work, an environmentally friendly procedure was developed, utilizing 4cyanobenzaldehyde as the photoinitiator and household bulbs as the irradiation source. A great variety of substrates was well-tolerated, leading to good yields, and mechanistic experiments were performed to elucidate the catalyst's possible mechanistic pathway. Moreover, the inherent selectivity challenge regarding α,α-disubstituted aldehydes (decarbonylation problem) was studied and addressed.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Errika Voutyritsa
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
11
|
Dantas JA, Correia JTM, Paixão MW, Corrêa AG. Photochemistry of Carbonyl Compounds: Application in Metal‐Free Reactions. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juliana A. Dantas
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - José Tiago M. Correia
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Marcio W. Paixão
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Arlene G. Corrêa
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| |
Collapse
|
12
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
13
|
Matsubara H, Kawamoto T, Fukuyama T, Ryu I. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1-Hydroxylallyl Radicals. Acc Chem Res 2018; 51:2023-2035. [PMID: 30137961 DOI: 10.1021/acs.accounts.8b00278] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1,4-Hydrogen transfer from the 1-hydroxyallyl radical to give the enoxyl (α-keto) radical is an exothermic process with a high activation energy based on DFT calculations. The lack of experimental examples of such 1,4-H shift reactions lies in the difficulty of generating the 1-hydroxyallyl radical. We have shown that radical carbonylation of alkenyl radicals with CO followed by nucleophilic trapping of the carbonyl portion of the resulting radical by amines gives rise to 1-amino-substituted 1-hydroxyallyl radicals in situ. At the outset of this chemistry, we examined intramolecular trapping reactions via radical carbonylation of alkynylamines mediated by tributyltin hydride. Consequently, α-methylene lactams were obtained, for which the initially formed 1-amino-substituted 1-hydroxyallyl radical underwent a 1,4-H shift followed by subsequent β-scission, which led to the expulsion of a tributyltin radical. A competing pathway of the 1,4-H shift of 1-amino-substituted 1-hydroxyallyl radicals involving hydrogen abstraction was observed, which led to the formation of α-stannylmethylene lactams as a major byproduct. However, in contrast, when intermolecular trapping of α-ketenyl radicals by amines was carried out, the 1,4-H shift from the 1-amino-substituted 1-hydroxyallyl radical became the major pathway, which gave good yields of α,β-unsaturated amides. Thus, we were able to develop three-component reactions comprising terminal alkynes, CO, and amines that led to α,β-unsaturated amides via the 1,4-H shift reaction. DFT calculations support the observation that the 1,4-H shift is more facile when 1-hydroxyallyl radicals have both 1-amino and 3-tin substituents. The choice of substituents on the amine nitrogen is also important, since N-C bond cleavage via an SH2-type reaction can become a competing pathway. Such an unusual SH2-type reaction at the amine nitrogen is favored when the leaving alkyl radicals are stable, such as PhC(•)H(CH3) and t-Bu•. Interestingly, even nucleophilic attack of tertiary amines onto α-ketenyl radicals causes cleavage of the C-N bond. For this reaction, DFT calculations predict an indirect homolytic substitution mechanism involving expulsion of alkyl radicals through the zwitterionic radical intermediate arising from nucleophilic amine addition onto the α-ketenyl radical. In contrast, the carbonylation of aryl radicals, generated from aryl iodides, in the presence of amines gave aromatic carboxylic amides in good yields. It is proposed that radical anions originating from acyl radicals and amines undergo electron transfer to aryl iodides to give aminocarbonylation products.
Collapse
Affiliation(s)
- Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takuji Kawamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300, ROC
| |
Collapse
|
14
|
Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chem Commun (Camb) 2018; 53:2335-2338. [PMID: 28164184 DOI: 10.1039/c6cc09725a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile sunlight-induced derivatization of heteroaromatics via photocatalyzed C-H functionalization in amides, ethers, alkanes and aldehydes is described. Tetrabutylammonium decatungstate (TBADT) was used as the photocatalyst and allowed to carry out the process under mild conditions.
Collapse
Affiliation(s)
- Matteo C Quattrini
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Saki Fujii
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Keiichi Yamada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan. and Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
15
|
Fukuyama T, Yamada K, Nishikawa T, Ravelli D, Fagnoni M, Ryu I. Site-selectivity in TBADT-photocatalyzed C(sp3)–H Functionalization of Saturated Alcohols and Alkanes. CHEM LETT 2018. [DOI: 10.1246/cl.171068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Keiichi Yamada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tomohiro Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Davide Ravelli
- Photo Green Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Photo Green Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Illhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Papadopoulos GN, Voutyritsa E, Kaplaneris N, Kokotos CG. Green Photo-Organocatalytic C−H Activation of Aldehydes: Selective Hydroacylation of Electron-Deficient Alkenes. Chemistry 2018; 24:1726-1731. [DOI: 10.1002/chem.201705634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Giorgos N. Papadopoulos
- Laboratory of Organic Chemistry, Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| | - Errika Voutyritsa
- Laboratory of Organic Chemistry, Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| | - Nikolaos Kaplaneris
- Laboratory of Organic Chemistry, Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| |
Collapse
|
17
|
Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. Site-Selective C–H Functionalization by Decatungstate Anion Photocatalysis: Synergistic Control by Polar and Steric Effects Expands the Reaction Scope. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03354] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University of Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University of Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Takahide Fukuyama
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tomohiro Nishikawa
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ilhyong Ryu
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Martínez JP, Rivera-Avalos E, Vega-Rodríguez S, de Loera D. Acylation of dimethyl maleate photocatalyzed by decatungstate anion: insights into the hydrogen atom transfer reaction mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3214-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Bouhalleb G, Mhasni O, Poli G, Rezgui F. Direct palladium-catalyzed allylic alkylations of alcohols with enamines: Synthesis of homoallyl ketones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
|
21
|
Abrams DJ, West JG, Sorensen EJ. Toward a mild dehydroformylation using base-metal catalysis. Chem Sci 2016; 8:1954-1959. [PMID: 28451310 PMCID: PMC5384452 DOI: 10.1039/c6sc04607j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022] Open
Abstract
Dehydroformylation, a challenging, underexplored reaction, can be performed under mild conditions using a designed cooperative base metal catalyst system.
Dehydroformylation, or the reaction of aldehydes to produce alkenes, hydrogen gas, and carbon monoxide, is a powerful transformation that is underdeveloped despite the high industrial importance of the reverse reaction, hydroformylation. Interestingly, nature routinely performs a related transformation, oxidative dehydroformylation, in the biosynthesis of cholesterol and related sterols under mild conditions using base-metal catalysts. In contrast, chemists have recently developed a non-oxidative dehydroformylation method; however, it requires high temperatures and a precious-metal catalyst. Careful study of both approaches has informed our efforts to design a base-metal catalyzed, mild dehydroformylation method that incorporates benefits from each while avoiding several of their respective disadvantages. Importantly, we show that cooperative base metal catalysis presents a powerful, mechanistically unique approach to reactions which are difficult to achieve using conventional catalyst design.
Collapse
Affiliation(s)
- Dylan J Abrams
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA . ; http://www.chemists.princeton.edu/sorensen
| | - Julian G West
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA . ; http://www.chemists.princeton.edu/sorensen
| | - Erik J Sorensen
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA . ; http://www.chemists.princeton.edu/sorensen
| |
Collapse
|
22
|
Che C, Huang Q, Zheng H, Zhu G. Copper-catalyzed cascade annulation of unsaturated α-bromocarbonyls with enynals: a facile access to ketones from aldehydes. Chem Sci 2016; 7:4134-4139. [PMID: 30155057 PMCID: PMC6014112 DOI: 10.1039/c5sc04980f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
A Cu-catalyzed cascade annulation of enynals with alkenyl or alkynyl α-bromocarbonyls for the synthesis of various cyclohexenone-fused polycyclic compounds is described. Up to six new C-C bonds and four new carbocycles can be established in a single reaction, highlighting the high efficiency and step-economics of this protocol. This reaction offers a novel and straightforward entry to the synthesis of ketones featuring the addition of carbon radicals to aldehydes.
Collapse
Affiliation(s)
- Chao Che
- Department of Chemistry , Zhejiang Normal University , 688 Yingbin Road , Jinhua 321004 , China .
| | - Qianwen Huang
- Department of Chemistry , Zhejiang Normal University , 688 Yingbin Road , Jinhua 321004 , China .
| | - Hanliang Zheng
- Department of Chemistry , Zhejiang Normal University , 688 Yingbin Road , Jinhua 321004 , China .
| | - Gangguo Zhu
- Department of Chemistry , Zhejiang Normal University , 688 Yingbin Road , Jinhua 321004 , China .
| |
Collapse
|
23
|
Zhu H, Nie X, Huang Q, Zhu G. Copper-catalyzed coupling of 2-vinyl benzaldehydes with 3-alkenyl 2-bromocarbonyls for the rapid construction of 3,4-cyclopenta-1-tetralones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|