1
|
Hamatani S, Kitagawa D, Kobatake S. Aza-Diarylethenes Undergoing Both Photochemically and Thermally Reversible Electrocyclic Reactions. Angew Chem Int Ed Engl 2024; 63:e202414121. [PMID: 39198686 PMCID: PMC11627127 DOI: 10.1002/anie.202414121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Exploring novel molecular photoswitches plays a crucial role in the field of photo-functional materials chemistry. In this study, we synthesized aza-diarylethenes with benzothiophene-S,S-dioxide as a part of the hexatriene structure and investigated their photochromic properties. Unlike previously reported aza-diarylethenes, which exhibit fast thermally reversible photochromism, the compounds synthesized here exhibited pseudo-photochemically reversible photochromism. Due to their thermal stability, we successfully isolated the colored isomer. X-ray crystallographic analysis revealed for the first time that the colored isomer adopts a closed-ring structure with a bond between carbon and nitrogen atoms. Remarkably, these aza-diarylethenes exhibited not only photochemical ring-closing and ring-opening reactions but also thermal ring-closing and ring-opening reactions, driven by a thermal equilibrium between the open- and closed-ring isomers. This behavior, unprecedented for common diarylethenes, was elucidated through kinetic analysis, revealing an energy-level diagram for the thermal equilibrium between these isomers. Furthermore, 1H NMR spectroscopy revealed that both photochemically and thermally generated closed-ring isomers adopt the same molecular structure, which was well explained based on the reaction mechanism of photochemical and thermal ring-closing reactions. These findings not only advance the field of aza-diarylethenes but also inspire future research in the development of new photoswitches.
Collapse
Affiliation(s)
- Shota Hamatani
- Department of Chemistry and Bioengineering, Graduate School of EngineeringOsaka Metropolitan University3-3-138 Sugimoto, Sumiyoshi-kuOsaka558-8585Japan
| | - Daichi Kitagawa
- Department of Chemistry and Bioengineering, Graduate School of EngineeringOsaka Metropolitan University3-3-138 Sugimoto, Sumiyoshi-kuOsaka558-8585Japan
| | - Seiya Kobatake
- Department of Chemistry and Bioengineering, Graduate School of EngineeringOsaka Metropolitan University3-3-138 Sugimoto, Sumiyoshi-kuOsaka558-8585Japan
| |
Collapse
|
2
|
Zhou Q, Kukier G, Gordiy I, Hoffmann R, Seeman JI, Houk KN. A 21st Century View of Allowed and Forbidden Electrocyclic Reactions. J Org Chem 2024; 89:1018-1034. [PMID: 38153322 PMCID: PMC10804416 DOI: 10.1021/acs.joc.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
In 1965, Woodward and Hoffmann proposed a theory to predict the stereochemistry of electrocyclic reactions, which, after expansion and generalization, became known as the Woodward-Hoffmann Rules. Subsequently, Longuet-Higgins and Abrahamson used correlation diagrams to propose that the stereoselectivity of electrocyclizations could be explained by the correlation of reactant and product orbitals with the same symmetry. Immediately thereafter, Hoffmann and Woodward applied correlation diagrams to explain the mechanism of cycloadditions. We describe these discoveries and their evolution. We now report an investigation of various electrocyclic reactions using DFT and CASSCF. We track the frontier molecular orbitals along the intrinsic reaction coordinate and modeled trajectories and examine the correlation between HOMO and LUMO for thermally forbidden systems. We also investigate the electrocyclizations of several highly polarized systems for which the Houk group had predicted that donor-acceptor substitution can induce zwitterionic character, thereby providing low-energy pathways for formally forbidden reactions. We conclude with perspectives on the field of pericyclic reactions, including a refinement as the meaning of Woodward and Hoffmann's "Violations. There are none!" Lastly, we comment on the burgeoning influence of computations on all fields of chemistry.
Collapse
Affiliation(s)
- Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Garrett Kukier
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Igor Gordiy
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Roald Hoffmann
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14850, United States
| | - Jeffrey I. Seeman
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095-1569. United States
| |
Collapse
|
3
|
Kraka E, Antonio JJ, Freindorf M. Reaction mechanism - explored with the unified reaction valley approach. Chem Commun (Camb) 2023; 59:7151-7165. [PMID: 37233449 DOI: 10.1039/d3cc01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One of the ultimate goals of chemistry is to understand and manipulate chemical reactions, which implies the ability to monitor the reaction and its underlying mechanism at an atomic scale. In this article, we introduce the Unified Reaction Valley Approach (URVA) as a tool for elucidating reaction mechanisms, complementing existing computational procedures. URVA combines the concept of the potential energy surface with vibrational spectroscopy and describes a chemical reaction via the reaction path and the surrounding reaction valley traced out by the reacting species on the potential energy surface on their way from the entrance to the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting species is registered by a change in the normal vibrational modes spanning the reaction valley and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction, with curvature minima reflecting minimal change and curvature maxima indicating the location of important chemical events such as bond breaking/formation, charge polarization and transfer, rehybridization, etc. A decomposition of the path curvature into internal coordinate components or other coordinates of relevance for the reaction under consideration, provides comprehensive insight into the origin of the chemical changes taking place. After giving an overview of current experimental and computational efforts to gain insight into the mechanism of a chemical reaction and presenting the theoretical background of URVA, we illustrate how URVA works for three diverse processes, (i) [1,3] hydrogen transfer reactions; (ii) α-keto-amino inhibitor for SARS-CoV-2 Mpro; (iii) Rh-catalyzed cyanation. We hope that this article will inspire our computational colleagues to add URVA to their repertoire and will serve as an incubator for new reaction mechanisms to be studied in collaboration with our experimental experts in the field.
Collapse
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| | - Juliana J Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| |
Collapse
|
4
|
Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides. Catalysts 2022. [DOI: 10.3390/catal12080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Imino gold carbenoid species have been recognized as key intermediates in a plethora of processes involving gold-activated alkynes. Here, we explored the pathways of the Au(I)-catalyzed [3 + 2] reaction between the mild nucleophiles: anthranil, 1,2,4-oxadiazole, or 4,5-dihydro-1,2,4-oxadiazole, and an ynamide, PhC≡C-N(Ts)Me, proceeding via the formation of the aforementioned α-imino gold carbene intermediate which, after intramolecular capture, regioselectively produces 2-amino-3-phenyl-7-acyl indoles, N-acyl-5-aminoimidazoles, or N-alkyl-4-aminoimidazoles, respectively. In all cases, the regioselectivity of the substituents at 2, 3 in the 7-acyl-indole ring and 4, 5 in the substituted imidazole ring is decided at the first transition state, involving the attack of nitrogen on the C1 or C2 carbon of the activated ynamide. A subsequent and steep energy drop furnishes the key α-imino gold carbene. These features are more pronounced for anthranil and 4,5-dihydro-1,2,4-oxadiazole reactions. Strikingly, in the 4,5-dihydro-1,2,4-oxadiazole reaction the significant drop of energy is due to the formation of an unstable α-imino gold carbene, which after a spontaneous benzaldehyde elimination is converted to a stabilized one. Compared to anthranil, the reaction pathways for 1,2,4-oxadiazoles or 4,5-dihydro-1,2,4-oxadiazoles are found to be significantly more complex than anticipated in the original research. For instance, compared to the formation of a five-member ring from the α-imino gold carbene, one competitive route involves the formation of intermediates consisting of a four-member ring condensed with a three-member ring, which after a metathesis and ring expansion led to the imidazole ring.
Collapse
|
5
|
Stylianakis I, Litinas I, Nieto Faza O, Kolocouris A, Silva López C. On the mechanism of the Au(I)‐mediated addition of alkynes to anthranils to furnish 7‐acylindoles. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ioannis Stylianakis
- Department of Medicinal Chemistry, Faculty of Pharmacy National and Kapodistrian University of Athens Panepistimioupolis Zografou Athens Greece
| | - Iraklis Litinas
- Department of Medicinal Chemistry, Faculty of Pharmacy National and Kapodistrian University of Athens Panepistimioupolis Zografou Athens Greece
| | - Olalla Nieto Faza
- Departamento de Química Orgánica Universidad de Vigo, Campus Lagoas‐Marcosende Vigo Spain
| | - Antonios Kolocouris
- Department of Medicinal Chemistry, Faculty of Pharmacy National and Kapodistrian University of Athens Panepistimioupolis Zografou Athens Greece
| | - Carlos Silva López
- Departamento de Química Orgánica Universidad de Vigo, Campus Lagoas‐Marcosende Vigo Spain
| |
Collapse
|
6
|
Pérez-Barcia Á, Peña-Gallego Á, Mandado M. Tracking the Transition from Pericyclic to Pseudopericyclic Reaction Mechanisms Using Multicenter Electron Delocalization Analysis: The [1,3] Sigmatropic Rearrangement. J Phys Chem A 2021; 125:8337-8344. [PMID: 34510896 PMCID: PMC8693182 DOI: 10.1021/acs.jpca.1c06620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Herein,
the power of multicenter electron delocalization analysis
to elucidate the intricacies of concerted reaction mechanisms is brought
to light by tracking the transition of [1,3] sigmatropic rearrangements
from the high-barrier pericyclic mechanism in 1-butene to the barrierless
pseudopericyclic mechanism in 1,2-diamino-1-nitrosooxyethane. This
transition has been progressively achieved by substituting the migrating
group, changing the donor and acceptor atoms, and functionalizing
the alkene unit with weak and strong electron-donating and electron-withdrawing
groups. Fourteen [1,3] sigmatropic reactions with electronic energy
barriers ranging from 1 to 89 kcal/mol have been investigated. A very
good correlation has been found between the barrier and the four-center
electron delocalization at the transition state, the latter calculated
for the atoms involved in the four-centered ring adduct formed along
the reaction path. Surprisingly, the barrier has been found to be
independent of the bond strength between the migrating group and the
donor atom so that only the changes induced in the multicenter bonding
control the kinetics of the reaction. Additional insights into the
effect of atom substitution and group functionalization have also
been extracted from the analysis of the multicenter electron delocalization
profiles along the reaction path and qualitatively supported by the
topological analysis of the electron density.
Collapse
Affiliation(s)
- Álvaro Pérez-Barcia
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Ángeles Peña-Gallego
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Marcos Mandado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
7
|
Makoś MZ, Freindorf M, Tao Y, Kraka E. Theoretical Insights into [NHC]Au(I) Catalyzed Hydroalkoxylation of Allenes: A Unified Reaction Valley Approach Study. J Org Chem 2021; 86:5714-5726. [PMID: 33780251 DOI: 10.1021/acs.joc.1c00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydroxylation is an effective approach for the synthesis of carbon-oxygen bonds and allylic ethers. The [NHC]Au(I) catalyzed intermolecular hydroalkoxylation of allene was studied at the DFT and Coupled Cluster level of theory. Using the Unified Reaction Valley Approach (URVA), we carry out a comprehensive mechanistic analysis of [NHC]Au(I)-catalyzed and noncatalyzed reactions. The URVA study of several possible reaction pathways reveal that the [NHC]Au(I) catalyst enables the hydroalkoxylation reaction to occur via a two step mechanism based upon the Au ability to switch between π- and σ-complexation. The first step of the mechanism involves the formation of a CO bond after the transition state with no energy penalty. Following the CO bond breakage, the OH bond breaks and CH bond forms during the second step of the mechanism, as the catalyst transforms into the more stable π-Au complex. The URVA results were complemented with local vibrational mode analysis to provide measures of intrinsic bond strength for Au(I)-allene interactions of all stationary points, and NBO analysis was applied in order to observe charge transfer events along the reaction pathway. Overall, the π-Au C═C interactions of the products are stronger than those of the reactants adding to their exothermicity. Our work on the hydroxylation of allene provides new insights for the design of effective reaction pathways to produce allylic ethers and also unravels new strategies to form C-O bonds by activation of C═C bonds.
Collapse
Affiliation(s)
- Małgorzata Z Makoś
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
8
|
Gagarin AA, Suntsova PO, Minin AS, Pozdina VA, Slepukhin PA, Benassi E, Belskaya NP. Two Approaches for the Synthesis of Fused Dihydropyridines via a 1,6-Electrocyclic Reaction: Fluorescent Properties and Prospects for Application. J Org Chem 2020; 85:13837-13852. [PMID: 33107738 DOI: 10.1021/acs.joc.0c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of penta-2,4-dienethioamides with acetylenedicarboxylic acid, methyl and ethyl esters, and methyl propiolate were systematically studied, and a number of new 2,3-dihydro-5H-thiazolo[3,2-a]pyridines (DTPs) and 4H,6H-pyrido[2,1-b][1,3]thiazines (PTZs) were prepared. A possible mechanism for a multistep domino transformation is suggested, and the key step is the 1,6-electrocyclic reaction. An additional alternative method for the synthesis of new heterocyclic systems was achieved. Evidence of the electrocyclic mechanism of a key step was collected from the analysis of the spatial structure of the synthesized bicyclic nonaromatic pyridines by X-ray diffraction and quantum chemical calculations, as well as from the thermodynamic quantities. DTPs exhibited yellow fluorescence in solution and yellow to red emissions in the solid state. Biological investigations demonstrated the ability of DTPs to penetrate living and fixed cells and presumably accumulate in lysosomes.
Collapse
Affiliation(s)
- Aleksey A Gagarin
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Polina O Suntsova
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Artem S Minin
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation.,M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| | - Varvara A Pozdina
- Institute of Immunology and Physiology, Pervomayskaya Str. 106, Ekaterinburg 620049, Russian Federation
| | - Pavel A Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Science, 22 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| | - Enrico Benassi
- Shihezi University, 280 North Fourth Road, Shihezi, Xinjiang 832000, China
| | - Nataliya P Belskaya
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation.,Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Science, 22 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| |
Collapse
|
9
|
Nanayakkara S, Freindorf M, Tao Y, Kraka E. Modeling Hydrogen Release from Water with Borane and Alane Catalysts: A Unified Reaction Valley Approach. J Phys Chem A 2020; 124:8978-8993. [PMID: 33064477 DOI: 10.1021/acs.jpca.0c07244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unified reaction valley approach combined with the local vibrational mode and ring puckering analysis is applied to investigate the hydrogen evolution from water in the presence of small hydrides such as BH3, metal hydrides as AlH3, and their derivatives. We studied a series of reactions involving BH3, AlH3, B2H6, Al2H6, and AlH3BH3 with one- and two-water molecules, considering multiple reaction paths. In addition, the influence of the aqueous medium was examined. A general reaction mechanism was identified for most of the reactions. Those that deviate could be associated with unusually high reaction barriers with no hydrogen release. The charge transfer along the reaction path suggests that a viable hydrogen release is achieved when the catalyst adopts the role of a charge donor during the chemical processes. The puckering analysis showed that twistboat and boat forms are the predominant configurations in the case of an intermediate six-membered ring formation, which influences the activation barrier. The local mode analysis was used as a tool to detect the H-H bond formation as well as to probe catalyst regenerability. Based on the correlation between the activation energy and the change in the charge separation for cleaving O-H and B(Al)-H bonds, two promising subsets of reactions could be identified along with prescriptions for lowering the reaction barrier individually with electron-donating/withdrawing substituents.
Collapse
Affiliation(s)
- Sadisha Nanayakkara
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
10
|
Saadat K, Villar López R, Shiri A, Nieto Faza O, Silva López C. The effect of solvation in torquoselectivity: ring opening of monosubstituted cyclobutenes. Org Biomol Chem 2020; 18:6287-6296. [PMID: 32734984 DOI: 10.1039/d0ob01229g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The paradigmatic electrocyclic ring opening of monosubstituted cyclobutenes has been used to diagnose possible solvation effects tuning the torquoselectivity observed in these reactions. This kind of selectivity in electrocyclic reactions is mostly due to strong orbital interactions, particularly when they involve powerful electron donors and acceptors, which also combine with usually milder steric effects. Orbital interactions are established between the cleaving C-C bond and the HOMO/LUMO of the EDG/EWG substituent. This implies that the larger torquoselectivity-featuring substrates may also suffer stronger solvation effects due to the higher polarity imposed by the substituent. This premise is tested and the source of solvation effects as a consequence of substitution analyzed.
Collapse
Affiliation(s)
- Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Roberto Villar López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| |
Collapse
|
11
|
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts 2020. [DOI: 10.3390/catal10060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts.
Collapse
|
12
|
Castro-Fernández S, Álvarez-García J, García-Río L, Silva-López C, Cid MM. Double Protonation of a cis-Bipyridoallenophane Detected via Chiral-Sensing Switch: The Role of Ion Pairs. Org Lett 2019; 21:5898-5902. [DOI: 10.1021/acs.orglett.9b02024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Castro-Fernández
- Departamento de Química Orgánica, Edificio Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo E-36310, Spain
| | - Jonathan Álvarez-García
- Departamento de Química Orgánica, Edificio Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo E-36310, Spain
| | - Luís García-Río
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Silva-López
- Departamento de Química Orgánica, Edificio Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo E-36310, Spain
| | - María Magdalena Cid
- Departamento de Química Orgánica, Edificio Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo E-36310, Spain
| |
Collapse
|
13
|
Nanayakkara S, Kraka E. A new way of studying chemical reactions: a hand-in-hand URVA and QTAIM approach. Phys Chem Chem Phys 2019; 21:15007-15018. [PMID: 31241084 DOI: 10.1039/c9cp01933b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bond formation and bond cleavage processes are central to a chemical reaction. They can be investigated by monitoring changes in the potential energy surface (PES) or changes in the electron density (ED) distribution ρ(r) taking place during the reaction. However, it is not yet clear how the corresponding changes in the PES and ED are related, although the connection between energy and density has been postulated in the famous Hohenberg-Kohn theorem. Our unified reaction valley approach (URVA) identifies the locations of bond formation/cleavage events along the reaction path via the reaction path curvature peaks and their decomposition into the internal coordinate components associated with the bond to be formed or cleaved. One can also investigate bond formation/cleavage events using the quantum theory of atoms-in-molecule (QTAIM) analysis by monitoring changes in the topological properties of ρ(r) and the associated Laplacian ∇2ρ(r). By a systematic comparison of these two approaches for a series of ten representative chemical reactions ranging from hydrogen migration to cycloaddition reactions and gold(i) catalysis, we could for the first time unravel the PES-ED relationship. In the case of a bond formation, all changes in the ED occur shortly before or at the corresponding curvature peak, and in a bond cleavage, the ED changes occur at or shortly after the curvature peak. In any case, the ED changes always occurred in the vicinity of the curvature peak in accordance with the Hohenberg-Kohn theorem. Our findings provide a comprehensive view on bond formation/cleavage processes seen through the eyes of both the PES and ED and offer valuable guidelines on where to search for significant ED changes associated with bond formation or cleavage events.
Collapse
Affiliation(s)
- Sadisha Nanayakkara
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.
| |
Collapse
|
14
|
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
15
|
Domingo LR, Ríos-Gutiérrez M, Silvi B, Pérez P. The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701350] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry; University of Valencia; Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry; University of Valencia; Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | - Bernard Silvi
- Sorbonne Universités; UPMC; Univ Paris 06; UMR 7616; Laboratoire de Chimie Théorique; 4 place Jussieu 75005 Paris France
| | - Patricia Pérez
- Universidad Andres Bello; Facultad de Ciencias Exactas; Departamento de Ciencias Químicas; Av. República 498 8370146 Santiago Chile
| |
Collapse
|
16
|
Rajale T, Sharma S, Unruh DK, Stroud DA, Birney DM. A pseudopericyclic [3,5]-sigmatropic rearrangement of a coumarin trichloroacetimidate derivative. Org Biomol Chem 2018; 16:874-879. [DOI: 10.1039/c7ob02335a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A Woodward–Hoffmann forbidden, eight-centered transition state leads to the sole product of a pentadienyl imidate rearrangement.
Collapse
Affiliation(s)
- Trideep Rajale
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
- Center for Integrated Nanotechnologies
| | - Shikha Sharma
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Daniel K. Unruh
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Daniel A. Stroud
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - David M. Birney
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
17
|
Chaquin P, Fuster F. Analysis of Reaction Processes On the Basis of the Evolution of Dynamic Orbital Forces: Examples of Cycloadditions, S N 2 Substitution, Nucleophilic Addition, and Hydrogen Transposition. Chemphyschem 2017; 18:2873-2880. [PMID: 28745451 DOI: 10.1002/cphc.201700820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/12/2022]
Abstract
The derivative of the energy of a canonical molecular orbital (MO) [or dynamical orbital forces (DOFs)] with respect to a bond length provides a reliable index of the bonding/antibonding character of this MO on this bond. The DOFs of selected MOs as a function of the reaction coordinate were computed for a panel of model reaction mechanisms: [2+4] (Diels-Alder) cycloaddition, [2+2] cycloaddition, second-order nucleophilic substitution (SN 2), nucleophilic addition to a carbonyl group, and [1,2] hydrogen transposition. The results highlight the nature of the reorganization of the main MOs and the stage of the reaction coordinate (RC) at which it occurs. For instance, in the Diels-Alder reaction, one can identify a part of the reaction that is dominated by repulsive four-electron interactions and another part dominated by attractive two-electron interactions. Also, the shape of the DOF as a function of the reaction coordinate reveals the existence of avoided MO crossings and their location on the RC. Even for spontaneous reactions with monotonic variation in the potential energy, extrema of the MO energy and sudden electron rearrangements can be put into evidence. This study provides quantitative support to classical MO analyses of reactivity such as correlation diagrams and frontier approximation.
Collapse
Affiliation(s)
- Patrick Chaquin
- Laboratoire de Chimie Théorique, LCT, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7616, Paris, F-75005, France
| | - Franck Fuster
- Laboratoire de Chimie Théorique, LCT, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7616, Paris, F-75005, France
| |
Collapse
|
18
|
Freindorf M, Cremer D, Kraka E. Gold(I)-assisted catalysis – a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1382735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
19
|
Zuo A, Birney DM. A Computational Study on the Addition of HONO to Alkynes toward the Synthesis of Isoxazoles; a Bifurcation, Pseudopericyclic Pathways and a Barrierless Reaction on the Potential Energy Surface. J Org Chem 2017; 82:8873-8881. [PMID: 28726408 DOI: 10.1021/acs.joc.7b01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homopropargyl alcohols react with t-BuONO to form acyloximes which can be oxidatively cyclized to yield ioxazoles. The mechanism for the initial reaction of HONO with alkynes to form acyloximes (e.g., 13c) has been explored at the B3LYP/6-31G(d,p) + ZPVE level of theory. The observed chemoselectivity and regioselectivity are explained via an acid-catalyzed mechanism. Furthermore, the potential energy surface revealed numerous surprising features. The addition of HONO (8) to protonated 1-phenylpropyne (18) is calculated to follow a reaction pathway involving sequential transition states (TS6 and TS8), for which reaction dynamics likely play a role. This reaction pathway can bypass the expected addition product 21 as well as transition state TS8, directly forming the rearranged product 23. Nevertheless, TS8 is key to understanding the potential energy surface; there is a low barrier for the pseudopericylic [1,3]-NO shift, calculated to be only 8.4 kcal/mol above 21. This places TS8 well below TS6, making the valley-ridge inflection point (VRI or bifurcation) and direct formation of 23 possible. The final tautomerization step to the acyloxime can be considered to be a [1,5]-proton shift. However, the rearrangement in the case of 17h to 13c is calculated to be barrierless, arguably because the pathway is pseudopericyclic and exothermic.
Collapse
Affiliation(s)
- Ang Zuo
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - David M Birney
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| |
Collapse
|
20
|
Santalla H, Faza ON, Gómez G, Fall Y, Silva López C. From Hydrindane to Decalin: A Mild Transformation through a Dyotropic Ring Expansion. Org Lett 2017. [PMID: 28641016 DOI: 10.1021/acs.orglett.7b01621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unexpected ring expansion converting hydrindane cores into decalins has been observed. The process occurs under very mild conditions and with exquisite transfer of chiral information. The ring expansion provides access to decorated decalins with complete stereocontrol. The reaction mechanism is studied in order to gain insight into the underlying causes for the low thermal requirements in this reaction and the nature of the chirality transfer process. Interestingly, both result from an unprecedented dyotropic reaction involving a mesylate group.
Collapse
Affiliation(s)
- Hugo Santalla
- Departamento de Química Orgánica, Campus Lagoas-Marcosende , 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Campus Lagoas-Marcosende , 36310 Vigo, Spain
| | - Generosa Gómez
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Campus Lagoas-Marcosende , 36310 Vigo, Spain
| | - Yagamare Fall
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Campus Lagoas-Marcosende , 36310 Vigo, Spain
| | - Carlos Silva López
- Departamento de Química Orgánica, Campus Lagoas-Marcosende , 36310 Vigo, Spain
| |
Collapse
|
21
|
Villar López R, Nieto Faza O, Matito E, López CS. Cycloreversion of the CO 2 trimer: a paradigmatic pseudopericyclic [2 + 2 + 2] cycloaddition reaction. Org Biomol Chem 2017; 15:435-441. [PMID: 27924328 DOI: 10.1039/c6ob02288j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Very recently, the CO2 trimer has been experimentally synthesized, isolated and characterized. This process opens new ways for the withdrawal and storage of this greenhouse gas. The trimer is reported to be stable up to -40 °C, with a lifetime of about 40 min at this temperature. At these or under harsher thermal conditions it reverts to the three monomers. The mechanism of this reaction has been theoretically studied and the electronic character of the associated transition state has been analyzed from a variety of perspectives (energetic, magnetic, electron localization and delocalization functions) which indicate that it has paradigmatic pseudopericyclic character. To allow for a comparative study, the isoelectronic fragmentations of cyclohexane into three units of ethylene and of benzene into three units of acetylene have been included in this work. The study of a similar series of formally forbidden-four-centered [2 + 2] cycloreversions confirmed the pseudopericyclic nature of these reactions when the CO2 dimer or trimer is involved.
Collapse
Affiliation(s)
- Roberto Villar López
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario, Ourense, Spain
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario, Ourense, Spain
| | - Eduard Matito
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Silva López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
22
|
Castiñeira Reis M, López CS, Kraka E, Cremer D, Faza ON. Rational Design in Catalysis: A Mechanistic Study of β-Hydride Eliminations in Gold(I) and Gold(III) Complexes Based on Features of the Reaction Valley. Inorg Chem 2016; 55:8636-45. [DOI: 10.1021/acs.inorgchem.6b01188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Carlos Silva López
- Departamento de Química Orgánica, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU), 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU), 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, Campus As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
23
|
|
24
|
Peng Q, Paton RS. Catalytic Control in Cyclizations: From Computational Mechanistic Understanding to Selectivity Prediction. Acc Chem Res 2016; 49:1042-51. [PMID: 27137131 DOI: 10.1021/acs.accounts.6b00084] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This Account describes the use of quantum-chemical calculations to elucidate mechanisms and develop catalysts to accomplish highly selective cyclization reactions. Chemistry is awash with cyclic molecules, and the creation of rings is central to organic synthesis. Cyclization reactions, the formation of rings by the reaction of two ends of a linear precursor, have been instrumental in the development of predictive models for chemical reactivity, from Baldwin's classification and rules for ring closure to the Woodward and Hoffmann rules based on the conservation of orbital symmetry and beyond. Ring formation provides a productive and fertile testing ground for the exploration of catalytic mechanisms and chemo-, regio-, diastereo-, and enantioselectivity using computational and experimental approaches. This Account is organized around case studies from our laboratory and illustrates the ways in which computations provide a deeper understanding of the mechanisms of catalysis in 5-endo cyclizations and how computational predictions can lead to the development of new catalysts for enhanced stereoselectivities in asymmetric cycloisomerizations. We have explored the extent to which several cation-directed 5-endo ring-closing reactions may be considered as electrocyclic and demonstrated that reaction pathways and magnetic parameters of transition structures computed using quantum chemistry are inconsistent with this notion, instead favoring a polar mechanism. A rare example of selectivity in favor of 5-endo-trig ring closure is shown to result from subtle substrate effects that bias the reactant conformation out-of-plane, limiting the involvement of cyclic conjugation. The mode of action of a chiral ammonium counterion was deduced via conformational sampling of the transition state assembly and involves coordination to the substrate via a series of nonclassical hydrogen bonds. We describe how computational mechanistic understanding has led directly to the discovery of new catalyst structures for enantioselective cycloisomerizations. Calculations have revealed that stepwise C-C bond formation and proton transfer dictate the exclusive endo diastereoselectivity of the intramolecular Michael addition to form 2-azabicyclo[3.3.1]nonane skeletons catalyzed by primary amines. These insights have led to development of a highly enantioselective catalyst with higher atom economy than previous generations. This Account also explores transition-metal-catalyzed cycloisomerizations, where our theoretical investigations have uncovered an unexpected reaction pathway in the [5 + 2] cycloisomerization of ynamides. This has led to the design of new phosphoramidite ligands to enable double-stereodifferentiating cycloisomerizations in both matched and mismatched catalyst-substrate settings. Computational understanding of the factors responsible for the regio-, enantio-, and diasterocontrol is shown to generate tangible predictions leading to an acceleration of catalyst development for selective cyclizations.
Collapse
Affiliation(s)
- Qian Peng
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, U.K
| | - Robert S. Paton
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, U.K
| |
Collapse
|