1
|
Ehsan M, Ghani L, Lan B, Katsube S, Poulsen IH, Zhang X, Arslan M, Byrne B, Loland CJ, Guan L, Liu X, Chae PS. Unsymmetric Triazine-Based Triglucoside Detergents for Membrane Protein Stability. Chembiochem 2025:e202400958. [PMID: 39779472 DOI: 10.1002/cbic.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Membrane proteins play a crucial role in a variety of biological processes and are key targets for pharmaceutical development. Structural studies of membrane proteins provide molecular insights into the mechanisms of these processes and are essential for effective drug discovery. Historically, these studies have relied on solubilization of the target protein using detergents, but conventional detergents often fail to maintain the stability of challenging membrane proteins. To address this issue, there is a need to develop novel detergents with enhanced protein stabilization properties. In this study, we synthesized unsymmetric variants of recently reported tris(hydroxymethyl)aminomethane(TRIS)-linker-bearing triazine-based triglucosides (TTGs) by incorporating two different alkyl chains (long and short) into the detergent structure. When tested with model membrane proteins, including a G protein-coupled receptor, TTG-8,12 demonstrated superior efficacy in stabilizing membrane proteins compared to the original TTGs and the gold standard detergents DDM/LMNG. These results suggest that detergent unsymmetry is an important concept for improving detergent performance and unsymmetric detergents such as TTG-8,12 hold significant potential for advancing membrane protein structural studies.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionano Engineering, Hanyang University ERICA, Ansan, 155-88, Republic of Korea
| | - Lubna Ghani
- Department of Bionano Engineering, Hanyang University ERICA, Ansan, 155-88, Republic of Korea
- Department of Chemistry, Women University of Azad Jammu & Kashmir Bagh, (WUAJK), Bagh, 12500 (AJK), Pakistan
| | - Baoliang Lan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ida H Poulsen
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Xiang Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Muhammad Arslan
- Department of Bionano Engineering, Hanyang University ERICA, Ansan, 155-88, Republic of Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University ERICA, Ansan, 155-88, Republic of Korea
| |
Collapse
|
2
|
Wycisk V, Behnke JS, Nielinger L, Seewald M, Weisner J, Binsch M, Wagner MC, Raisch T, Urner LH. Synthesis of Asymmetric Ionic Hybrid Detergents enables Micelles with Scalable Properties including Cell Compatibility. Chemistry 2024:e202401833. [PMID: 38819585 DOI: 10.1002/chem.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Ionic detergents enable applications and cause harm in biospheres due to cell toxicity. The utility of covalent combinations between ionic and non-ionic detergent headgroups in modulating cell toxicity remains speculative due to the yet rarely explored synthesis. We close this gap and establish the modular synthesis of ionic/non-ionic hybrid detergents. We restructure a combinatorial methallyl dichloride one-pot coupling into a two-step coupling, which reduces by-products, improves product yields, and enables the gram-scale preparation of asymmetric, cationic/non-ionic and anionic/non-ionic hybrid detergents. Our modular synthesis delivers new modalities for the design of ionic detergents, including an unprecedented scaling of properties that determine applications, such as charge, critical micelle concentration, solubilizing properties, hard water tolerance, and cell compatibility. We uncover that shielding the charge in ionic headgroups can switch the detergent species that is toxic to cells from monomers to mixtures of monomers and micellar assemblies. Establishing the chemistry of ionic/non-ionic hybrid detergents provides a missing evolutionary link in the structural comparison of ionic and non-ionic detergents, enables an easy synthesis access to yet unexplored chemical spaces of asymmetric hybrid materials, and delivers new modalities for designing the toxicity of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jan-Simon Behnke
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Lena Nielinger
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc Seewald
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jörn Weisner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Markus Binsch
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Tobias Raisch
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227, Dortmund
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| |
Collapse
|
3
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Grousson E, Mahler F, Keller S, Contino-Pépin C, Durand G. Hybrid Fluorocarbon-Hydrocarbon Surfactants: Synthesis and Colloidal Characterization. J Org Chem 2021; 86:14672-14683. [PMID: 34609857 DOI: 10.1021/acs.joc.1c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four double-tailed hybrid fluorocarbon-hydrocarbon (F-H) surfactants with a poly(ethylene glycol) (PEG) polar headgroup were synthesized. The hydrophobic scaffold consists of an amino acid core, onto which were grafted both fluorocarbon and hydrocarbon chains of different lengths. The PEG polar head was connected to the hydrophobic scaffold through a copper(I)-mediated click reaction. The four derivatives exhibit aqueous solubility >100 g/L and self-assemble into micellar aggregates with micromolar critical micellar concentration (CMC) values, as demonstrated by isothermal titration calorimetry (ITC), surface tension (ST) measurements, and steady-state fluorescence spectroscopy. The CMC value decreased by a factor of ∼6 for each additional pair of CH2 groups, whereas a decrease by a factor of ∼2.5 was observed when the size of the PEG polar head was reduced from 2000 to 750 g/mol. Dynamic light scattering (DLS) showed unimodal micelle populations with hydrodynamic diameters of 10-15 nm, in agreement with results obtained from size-exclusion chromatography (SEC). The aggregation number increased with the hydrocarbon chain length but decreased with increasing PEG chain lengths. The combination in one molecular design of both low CMC and high water solubility makes these new surfactants promising systems for novel drug-delivery systems.
Collapse
Affiliation(s)
- Emilie Grousson
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Christiane Contino-Pépin
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| |
Collapse
|
5
|
Zhou R, Jin Y, Shen Y, Zhao P, Zhou Y. Synthesis and application of non-bioaccumulable fluorinated surfactants: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Due to negative effects of conventional fluorinated surfactants with long perfluorocarbon chain (CxF2x+ 1, x≥7) like perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), these conventional long perfluorocarbon chain surfactants have been restricted in many industrial applications. Nowadays, their potential non-bioaccumulable alternatives have been developed to meet the requirements of environmental sustainable development. In this paper, the recent advances of potential non-bioaccumulable fluorinated surfactants with different fluorocarbon chain structures, including the short perfluorocarbon chain, the branched fluorocarbon chain, and the fluorocarbon chain with weak points, are reviewed from the aspects of synthesis processes, properties, and structure-activity relationships. And their applications in emulsion polymerization of fluorinated olefins, handling membrane proteins, and leather manufacture also are summarized. Furthermore, the challenges embedded in the current non-bioaccumulable fluorinated surfactants are also highlighted and discussed with the hope to provide a valuable reference for the prosperous development of fluorinated surfactants.
Graphical abstract
Collapse
|
6
|
Baba T, Takagi T, Sumaru K, Kanamori T. Effect of the fluorination degree of partially fluorinated octyl-phosphocholine surfactants on their interfacial properties and interactions with purple membrane as a membrane protein model. Chem Phys Lipids 2020; 227:104870. [DOI: 10.1016/j.chemphyslip.2020.104870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
|
7
|
Bonnet C, Guillet P, Igonet S, Meister A, Marconnet A, Keller S, Jawhari A, Durand G. Hybrid Double-Chain Maltose-Based Detergents: Synthesis and Colloidal and Biochemical Evaluation. J Org Chem 2019; 84:10606-10614. [PMID: 31414599 DOI: 10.1021/acs.joc.9b00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four hybrid double-chain surfactants with a maltose polar head were synthesized. The apolar domain consists of a hydrogenated chain, and a partially fluorinated chain made of a propyl hydrogenated spacer terminated by a perfluorinated core of various lengths. Their water solubility was found to be lower than 1 g/L irrespective of the length of both chains. The self-assembling properties of pure hybrids in water were studied by dynamic light scattering and transmission electron microscopy, which revealed the formation of two populations of aggregates with diameters of 8-50 nm and 80-300 nm. When mixed with the classical detergent n-dodecylmaltoside (DDM), the four hybrids were well soluble and formed small mixed micelles. DDM/hybrid mixtures were further evaluated for the extraction of the full-length, wild-type human GPCR adenosine receptor (A2AR), and the bacterial transporter AcrB. The solubilization of A2AR showed extraction efficiencies ranging from 40 to 70%, while that of AcrB reached 60-90%. Finally, three of the hybrids exhibited significant thermostabilization when present as additives. The derivative with a C12-hydrogenated chain and a C4F9-fluorinated chain emerged as the most potent additive exhibiting both good extraction yields of A2AR and AcrB and thermostabilization of A2AR by ∼7 °C.
Collapse
Affiliation(s)
- Christophe Bonnet
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France
| | - Pierre Guillet
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France
| | - Sébastien Igonet
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CALIXAR , 60 Avenue Rockefeller , 69008 Lyon , France
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Kurt-Mothes-Str. 3a , D-06120 Halle/Saale , Germany
| | - Anaïs Marconnet
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Anass Jawhari
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CALIXAR , 60 Avenue Rockefeller , 69008 Lyon , France
| | - Grégory Durand
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France.,CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9 , France
| |
Collapse
|
8
|
Guillet P, Mahler F, Garnier K, Nyame Mendendy Boussambe G, Igonet S, Vargas C, Ebel C, Soulié M, Keller S, Jawhari A, Durand G. Hydrogenated Diglucose Detergents for Membrane-Protein Extraction and Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4287-4295. [PMID: 30767533 DOI: 10.1021/acs.langmuir.8b02842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.
Collapse
Affiliation(s)
- Pierre Guillet
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
| | - Florian Mahler
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Kelly Garnier
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CALIXAR , 60 Avenue Rockefeller , 69008 Lyon , France
| | - Gildas Nyame Mendendy Boussambe
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
| | - Sébastien Igonet
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CALIXAR , 60 Avenue Rockefeller , 69008 Lyon , France
| | - Carolyn Vargas
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS , F-38000 Grenoble , France
| | - Marine Soulié
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Anass Jawhari
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CALIXAR , 60 Avenue Rockefeller , 69008 Lyon , France
| | - Grégory Durand
- Equipe Chimie Bioorganique et Systèmes Amphiphiles , Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
- CHEM2STAB , 301 rue Baruch de Spinoza , 84916 Avignon cedex 9, France
| |
Collapse
|
9
|
Yamamoto K, Ishimaru S, Oyama T, Tanigawa S, Kuriyama M, Onomura O. Enantioselective Synthesis of α-Substituted Serine Derivatives via Cu-Catalyzed Oxidative Desymmetrization of 2-Amino-1,3-diols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shota Ishimaru
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tatsuya Oyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Satoko Tanigawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Rationally Engineered Tandem Facial Amphiphiles for Improved Membrane Protein Stabilization Efficacy. Chembiochem 2018; 19:2225-2232. [PMID: 30070754 DOI: 10.1002/cbic.201800388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 01/11/2023]
Abstract
A new family of tandem facial glucosides/maltosides (TFGs/TFMs) for membrane protein manipulation was prepared. The best detergent varied depending on the hydrophobic thickness of the target protein, but ether-based TFMs (TFM-C0E, TFM-C3E, and TFM-C5E) were notable for their ability to confer higher membrane protein stability than the previously developed amide-based TFA-1 (P. S. Chae, K. Gotfryd, J. Pacyna, L. J. W. Miercke, S. G. F. Rasmussen, R. A. Robbins, R. R. Rana, C. J. Loland, B. Kobilka, R. Stroud, B. Byrne, U. Gether, S. H. Gellman, J. Am. Chem. Soc. 2010, 132, 16750-16752). Thus, this study not only introduces novel agents with the potential to be used in membrane protein research but also highlights the importance of both the hydrophobic length and linker functionality of the detergent in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea.,Present address: Molecular Biophysics, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Hyun Sung Lee
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| |
Collapse
|