1
|
Das S, Datta T, Sk MA, Roy B, Nandi RK. Isoxazole group directed Rh(III)-catalyzed alkynylation using TIPS-EBX. Org Biomol Chem 2024; 22:6922-6927. [PMID: 38978484 DOI: 10.1039/d4ob00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A highly effective isoxazole directed ortho C-H alkynylation has been developed. Rhodium(III) catalyzed direct di-(and/or mono) alkynylation using a hypervalent iodine reagent (TIPS-EBX) is reported. The reaction proceeds with a wide substrate scope under benign conditions. Preliminary mechanistic studies support this chelation assisted C-H alkynylation.
Collapse
Affiliation(s)
- Sukanya Das
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Tanmoy Datta
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Md Abbasuddin Sk
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Brindaban Roy
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Raj K Nandi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
2
|
More DA, Ghotekar GS, Muthukrishnan M. BF 3 ⋅Et 2 O-Catalyzed Selective C-4 Alkylation of Isoquinolin-1(2H)-ones Employing p-Quinone Methides. Chem Asian J 2023; 18:e202300546. [PMID: 37449661 DOI: 10.1002/asia.202300546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The direct C-4 alkylation of isoquinolin-1(2H)-one moiety is a challenging transformation in organic synthesis. Here we present a practical and efficient synthesis of C-4 alkylated isoquinolin-1(2H)-ones through conjugate addition of isoquinolin-1(2H)-ones to p-quinone methides for the first time. The process is facilitated by Lewis acid catalysis and this operationally straightforward, mild, metal-free and one-pot transformation provides a wide range of C-4 alkylated isoquinolin-1(2H)-ones at ambient temperature in good to excellent yields.
Collapse
Affiliation(s)
- Devidas A More
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ganesh S Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Yang F, Zhou P, Huang Z, Liao J, Huang G, Liang T, Zhang Z. Ruthenium(II)-Catalyzed Remote C-H Sulfonylation of 2-Pyridones. Org Lett 2023; 25:5779-5783. [PMID: 37498216 DOI: 10.1021/acs.orglett.3c02004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, a ruthenium-mediated remote C-H mono- and disulfonylation of 2-pyridones with arylsulfonyl chlorides is developed. The catalytic system consisting of a [Ru(p-cymene)Cl2]2 catalyst and KOAc additive allows 2-pyridones to undergo C3,C5-disulfonylation in 1,4-dioxane, and C5-sulfonylation when the C3-position of 2-pyridones is blocked. The successful transformation of the products and late-stage modification of estrone further highlighted the potential utility and significance of this synthetic protocol. Preliminary mechanistic studies indicated that the remote regioselectivity might be dictated via chelation-assisted ruthenation.
Collapse
Affiliation(s)
- Fengqi Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Pengfei Zhou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zeng Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Junqiu Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
4
|
Bera S, Biswas A, Pal J, Roy L, Mondal S, Samanta R. Pd(II)-Catalyzed Oxidative Naphthylation of 2-Pyridone through N-H/C-H Activation Using Diarylacetylene as an Uncommon Arylating Agent. Org Lett 2023; 25:1952-1957. [PMID: 36896989 DOI: 10.1021/acs.orglett.3c00497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A Pd(II)-catalyzed straightforward oxidative naphthylation of unmasked 2-pyridone derivatives is described using a twofold internal alkyne as a coupling partner. The reaction proceeds through N-H/C-H activation to provide polyarylated N-naphthyl 2-pyridones. An unusual oxidative annulation at the arene C-H bond of the diarylalkyne leads to the formation of polyarylated N-naphthyl 2-pyridones, where the 2-pyridone-attached phenyl ring of the naphthyl ring is polyaryl-substituted. Mechanistic studies and DFT calculations suggest a plausible mechanism based on N-H/C-H activation. The N-naphthyl 2-pyridone derivatives were studied to explore encouraging photophysical properties.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Bera S, Sarkar S, Pal J, Samanta R. Rh(III)-Catalyzed Weakly Coordinating 2-Pyridone-Directed Oxidative Annulation Using Internal Alkynes: A Reversal in Selectivity. Org Lett 2022; 24:8470-8475. [DOI: 10.1021/acs.orglett.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanhita Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Shan Y, Huang G, Yu JT, Pan C. Rh(III)‐catalyzed C6‐selective C–H 3‐oxoalkylation of 2‐pyridones with allylic alcohols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yujia Shan
- Changzhou University School of Petrochemical Engineering CHINA
| | - Gao Huang
- Changzhou University School of Petrochemical Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| | - Changduo Pan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| |
Collapse
|
7
|
Suzuki H, Ito Y, Matsuda T. Rhodium-Catalyzed C6-Selective Alkoxycarbonylation of Pyridones. CHEM LETT 2022. [DOI: 10.1246/cl.220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Yuki Ito
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| |
Collapse
|
8
|
Raziullah, Kumar M, Ahmad A, Dutta HS, Rastogi A, Gangwar MK, Koley D. Ru-Catalyzed C-H alkenylation on the arene ring of pirfenidone using pyridone as a directing group. Chem Commun (Camb) 2022; 58:3481-3484. [PMID: 35191453 DOI: 10.1039/d2cc00257d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A method to functionalize the arene ring of pirfenidone has been demonstrated using pyridone as a directing group. Unlike the functionalization of the pyridone nucleus, the method demonstrated here is the alkenylation of the N-aryl ring of pirfenidone with internal alkynes using ruthenium catalyst. High functional group tolerance, simple reaction conditions and site-selective functionalization permit the synthesis of new analogues of drugs in a step-economical manner. The data of the control experiments suggest the possibilities of a base-assisted internal electrophilic substitution (BIES) pathway.
Collapse
Affiliation(s)
- Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Mohit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Himangsu Sekhar Dutta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal-23955-6900, Kingdom of Saudi Arabia
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
10
|
|
11
|
Praveen C, Dupeux A, Michelet V. Catalytic Gold Chemistry: From Simple Salts to Complexes for Regioselective C-H Bond Functionalization. Chemistry 2021; 27:10495-10532. [PMID: 33904614 DOI: 10.1002/chem.202100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/07/2022]
Abstract
Gold coordinated to neutral phosphines (R3 P), N-heterocyclic carbenes (NHCs) or anionic ligands is catalytically active in functionalizing various C-H bonds with high selectivity. The sterics/electronic nature of the studied C-H bond, oxidation state of gold and stereoelectronic capacity of the coordinated auxiliary ligand are some of the associated selectivity factors in gold-catalyzed C-H bond functionalization reactions. Hence, in this review a comprehensive update about the action of different types of gold catalysts, from simple to sophisticated ones, on C-H bond reactions and their regiochemical outcome is disclosed. This review also highlights the catalytic applications of Au(I)- and Au(III)-species in creating new opportunities for the regio- and site-selective activation of challenging C-H bonds. Finally, it also intends to stress the potential applications in selective C-H bond activation associated with a variety of heterocycles recently described in the literature.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemcial Research Institute (CSIR Laboratory) Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| | - Aurélien Dupeux
- Institut de Chimie de Nice, UMR 7272 CNRS, University Côte d'Azur Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| | - Véronique Michelet
- Institut de Chimie de Nice, UMR 7272 CNRS, University Côte d'Azur Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| |
Collapse
|
12
|
Huang G, Shan Y, Yu JT, Pan C. Rh III -Catalyzed C6-Selective Oxidative C-H/C-H Crosscoupling of 2-Pyridones with Thiophenes. Chemistry 2021; 27:12294-12299. [PMID: 34156130 DOI: 10.1002/chem.202101769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/24/2022]
Abstract
A rhodium(III)-catalyzed C6-selective dehydrogenative cross-coupling of 2-pyridones with thiophenes was developed for the synthesis of 6-thiophenyl pyridin-2(1H)-one derivatives. In this reaction, the excellent site selectivity was controlled by the 2-pyridyl directing group on the nitrogen of the pyridone ring. Control experiments indicated that the N-pyridyl was essential for the transformation. To the best of our knowledge, this procedure is the first successful example of the direct C6 heteroarylation of 2-pyridones with electron-rich thiophene derivatives. 4-Pyridone was also used as substrate to generate the corresponding C2 heteroarylated product. Moreover, this pyridyl directing group was readily removable to generate the biheteroaryl structures with a free N-H group.
Collapse
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| |
Collapse
|
13
|
|
14
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
15
|
Xu X, Luo C, Zhao H, Pan Y, Zhang X, Li J, Xu L, Lei M, Walsh PJ. Rhodium(III)-Catalyzed C-H Bond Functionalization of 2-Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation. Chemistry 2021; 27:8811-8821. [PMID: 33871117 DOI: 10.1002/chem.202101074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Cp*Rh(III)-catalyzed chelation-assisted direct C-H bond functionalization of 1-(2-pyridyl)-2-pyridones with internal alkynes that can be controlled to give three different products in good yields has been realized. Depending on the reaction conditions, solvents and additives, the reaction pathway can be switched between alkenylation, alkenylation/directing group migration and rollover annulation. These reaction manifolds allow divergent access to a variety of valuable C6-alkenylated 1-(2-pyridyl)-2-pyridones, (Z)-6-(1,2-diaryl-2-(pyridin-2-yl)vinyl)pyridin-2(1H)-ones and 10H-pyrido[1,2-a][1,8]naphthyridin-10-ones from the same starting materials. These protocols exhibit excellent regio- and stereoselectivity, broad substrate scope, and good tolerance of functional groups. A combination of experimental and computational approaches have been employed to uncover the key mechanistic features of these reactions.
Collapse
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenguang Luo
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xin Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Jiajie Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
16
|
Wang X, He Z, Xu X, Zhao H, Pan Y, Li H, Xu L. Rh(III)‐catalyzed C6‐selective Acylmethylation and Carboxymethylation of 2‐Pyridones with Diazo Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202002016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Wang
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Zhongyu He
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Huanrong Li
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| |
Collapse
|
17
|
Yin G, Li Y, Wang RH, Li JF, Xu XT, Luan YX, Ye M. Ligand-Controlled Ni(0)–Al(III) Bimetal-Catalyzed C3–H Alkenylation of 2-Pyridones by Reversing Conventional Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ge Yin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Zhu Y, Hui L, Zhang S. A Palladium(0)‐Catalyzed C4 Site‐Selective C−H Difluoroalkylation of Isoquinolin‐1(
2H
)‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- You‐Quan Zhu
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Li‐Wen Hui
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Shi‐Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| |
Collapse
|
19
|
Zhao K, Du Y, Peng Q, Yu WH, Wang BQ, Feng C, Xiang SK. Regiodivergent C-H Arylation of Triphenylene Derivatives Controlled by Electronic Effects of Diaryliodonium Salts. J Org Chem 2021; 86:2986-2997. [PMID: 33481590 DOI: 10.1021/acs.joc.0c02900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A regiodivergent C-H arylation of triphenylene derivatives with diaryliodonium salts was developed. The regiodivergence was controlled by electronic effects of diaryliodonium salts. When the aryl(mesityl)iodonium salts bearing strong electron-donating groups at the para-position of aryl groups were used, the arylation reactions occurred ortho to amide groups. However, if the aryl(mesityl)iodonium salts bearing electron-withdrawing groups or weak electron-donating groups at the para-position of aryl groups were utilized, the arylation reactions occurred meta to amide groups.
Collapse
Affiliation(s)
- Ke Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yu Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qiong Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
20
|
Martínez-Mingo M, Alonso I, Rodríguez N, Gómez Arrayás R, Carretero JC. Mechanistic understanding enables chemoselective sp 3 over sp 2 C–H activation in Pd-catalyzed carbonylative cyclization of amino acids. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02328k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An understanding on the factors controlling C(sp2)–H vs, C(sp3)–H selectivity in Pd-catalyzed carbonylative cyclization of γ-arylated valine derivatives has allowed to reverse the remarkable selectivity of Pd for aryl C(sp2)–H over C(sp3)–H cleavage.
Collapse
Affiliation(s)
| | - Inés Alonso
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Nuria Rodríguez
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Juan C. Carretero
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
21
|
I
2
‐Promoted Direct C−H Sulfenylation of Isoquinolin‐1(2
H
)‐ones with Sulfonyl Chlorides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Zhou S, Liu DY, Wang S, Tian JS, Loh TP. An efficient method for the synthesis of 2-pyridones via C-H bond functionalization. Chem Commun (Camb) 2020; 56:15020-15023. [PMID: 33185645 DOI: 10.1039/d0cc06834a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method to access N-substituted 2-pyridones via a formal [3+3] annulation of enaminones with acrylates based on RhIII-catalyzed C-H functionalization was developed. Control and deuterated experiments led to a plausible mechanism involving C-H bond cross-coupling and aminolysis cyclization. This strategy provides a short synthesis of structural motifs of N-substituted 2-pyridones.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | | | | | | | | |
Collapse
|
23
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
24
|
Chandra D, Dhiman AK, Parmar D, Sharma U. Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1839849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| |
Collapse
|
25
|
Biswas A, Maity S, Pan S, Samanta R. Transition Metal‐Catalysed Direct C−H Bond Functionalizations of 2‐Pyridone Beyond C3‐Selectivity. Chem Asian J 2020; 15:2092-2109. [PMID: 32500612 DOI: 10.1002/asia.202000506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Saurabh Maity
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
- Current Address: Institute of Organic and Biomolecular ChemistryGeorg-August University Goettingen 37077 Germany
| | - Subarna Pan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| |
Collapse
|
26
|
Zhao H, Xu X, Yu H, Li B, Xu X, Li H, Xu L, Fan Q, Walsh PJ. Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Org Lett 2020; 22:4228-4234. [DOI: 10.1021/acs.orglett.0c01277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haiyang Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bohan Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
27
|
Meesa SR, Naikawadi PK, Gugulothu K, Shiva Kumar K. Catalyst and solvent switched divergent C-H functionalization: oxidative annulation of N-aryl substituted quinazolin-4-amine with alkynes. Org Biomol Chem 2020; 18:3032-3037. [PMID: 32242597 DOI: 10.1039/d0ob00318b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of site-selective C-H functionalizations/annulations is one of the most challenging practices in synthetic organic chemistry particularly for substrates bearing several similarly reactive C-H bonds. Herein, we describe catalyst and solvent controlled ortho/peri site-selective oxidative annulation of C-H bonds of N-aryl substituted quinazolin-4-amines with internal alkynes. The ortho C-H selective annulation was observed using Pd-catalyst in DMF to give indole-quinazoline derivatives, while, Ru-catalyst in PEG-400 favoured the peri C-H bond annulation exclusively to furnish pyrido-quinazoline derivatives.
Collapse
Affiliation(s)
| | | | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | - K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| |
Collapse
|
28
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
29
|
Miura M, Hirano K, Hazra S. Pyridine-Directed Rh-Catalyzed C6-Selective C–H Acetoxylation of 2-Pyridones. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Banerjee S, Bhoyare VW, Patil NT. Gold and hypervalent iodine(iii): liaisons over a decade for electrophilic functional group transfer reactions. Chem Commun (Camb) 2020; 56:2677-2690. [PMID: 32090230 DOI: 10.1039/d0cc00106f] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the last two decades, hypervalent iodine(iii) reagents have evolved from being 'bonding curiosities' to mainstream reagents in organic synthesis, in particular, electrophilic functional group transfer reactions. In this context, gold catalysts have not only emerged as a unique toolbox to facilitate such reactions (especially alkynylations) but also opened new possibilities with their different modes of reactivities for other functional group transfer reactions (acetoxylations and arylations). This feature article critically summarizes hitherto all such Au-catalyzed electrophilic functional group transfer reactions with hypervalent iodine(iii) reagents, emphasizing their mechanistic aspects.
Collapse
Affiliation(s)
- Somsuvra Banerjee
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| |
Collapse
|
31
|
Fu Y, Wang Z, Zhang Q, Li Z, Liu H, Bi X, Wang J. Ru(ii)-catalyzed C6-selective C–H acylmethylation of pyridones using sulfoxonium ylides as carbene precursors. RSC Adv 2020; 10:6351-6355. [PMID: 35496007 PMCID: PMC9049633 DOI: 10.1039/c9ra10749e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex. This approach featured mild reaction conditions, moderate to excellent yields, high step economy, and had excellent functional group tolerance with good site selectivity. Besides, gram-scale preparation, synthetic utility, and mechanistic studies were conducted. It offers a direct and efficient way to synthesize pyridone derivatives. In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex.![]()
Collapse
Affiliation(s)
- Yangjie Fu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhaohui Wang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qiyu Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hong Liu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaoling Bi
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiang Wang
- State Key Laboratory of Drug Research
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
32
|
Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Rhodium(i)-catalyzed C6-selective C-H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chem Sci 2019; 10:10089-10096. [PMID: 32055363 PMCID: PMC6991184 DOI: 10.1039/c9sc03672e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023] Open
Abstract
A versatile Rh(i)-catalyzed C6-selective decarbonylative C-H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C-H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc2O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C-H bond cleavage is likely the turnover-limiting step.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Bohan Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| |
Collapse
|
33
|
Katsina T, Papoulidou KE, Zografos AL. Umpolung-like Cross-coupling of Tosylhydrazones with 4-Hydroxy-2-pyridones under Palladium Catalysis. Org Lett 2019; 21:8110-8115. [DOI: 10.1021/acs.orglett.9b03119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tania Katsina
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Alexandros L. Zografos
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
34
|
Phakdeeyothin K, Yotphan S. Metal-free regioselective direct thiolation of 2-pyridones. Org Biomol Chem 2019; 17:6432-6440. [PMID: 31218319 DOI: 10.1039/c9ob01061k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly regioselective metal-free direct C-H thiolation of 2-pyridones with disulfides or thiols has been developed. A combination of persulfate and a commercially available halide source such as LiCl, NCS or I2 enables the successful direct incorporation of a sulfide moiety into the 5-position of pyridone under mild conditions, providing a useful and convenient approach for the preparation of a diverse array of 5-thio-substituted pyridones in moderate to excellent yields.
Collapse
Affiliation(s)
- Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
35
|
Hillenbrand J, Ham WS, Ritter T. C–H Pyridonation of (Hetero-)Arenes by Pyridinium Radical Cations. Org Lett 2019; 21:5363-5367. [DOI: 10.1021/acs.orglett.9b02054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
| | - Won Seok Ham
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
36
|
Li M, Wang JH, Li W, Lin CD, Zhang LB, Wen LR. N-Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3-d]oxazoles. J Org Chem 2019; 84:8523-8530. [DOI: 10.1021/acs.joc.9b00858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
37
|
Li M, Li W, Lin CD, Wang JH, Wen LR. One Base for Two Shots: Metal-Free Substituent-Controlled Synthesis of Two Kinds of Oxadiazine Derivatives from Alkynylbenziodoxolones and Amidoximes. J Org Chem 2019; 84:6904-6915. [DOI: 10.1021/acs.joc.9b00659] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
38
|
Hazra S, Hirano K, Miura M. Solvent‐Controlled Rhodium‐Catalyzed C6‐Selective C−H Alkenylation and Alkylation of 2‐Pyridones with Acrylates. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sunit Hazra
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan) Fax: (+81) 6-6879-7362
| | - Koji Hirano
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan) Fax: (+81) 6-6879-7362
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan) Fax: (+81) 6-6879-7362
| |
Collapse
|
39
|
Zhu Y, Niu Y, Hui L, He J, Zhu K. Reaction of Isoquinolin‐1(2
H
)‐Ones with Methylenecyclopropanes via Rhodium(III)‐Catalyzed C−H Activation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- You‐Quan Zhu
- State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Yun‐Xia Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Li‐Wen Hui
- State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Jing‐Li He
- State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Kun Zhu
- State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
40
|
Rohokale RS, Kalshetti RG, Ramana CV. Iridium(III)-Catalyzed Alkynylation of 2-(Hetero)arylquinazolin-4-one Scaffolds via C–H Bond Activation. J Org Chem 2019; 84:2951-2961. [DOI: 10.1021/acs.joc.8b02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajendra S. Rohokale
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rupali G. Kalshetti
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Chepuri V. Ramana
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
41
|
Tiwari VK, Kapur M. Catalyst-controlled positional-selectivity in C–H functionalizations. Org Biomol Chem 2019; 17:1007-1026. [DOI: 10.1039/c8ob02272k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C–H bonds are ubiquitous in organic molecules and typically these bonds are chemically indistinct from each other and it would be highly advantageous for a synthetic chemist to have the ability to choose which C–H bond is functionalized in a given molecule.
Collapse
Affiliation(s)
- Virendra Kumar Tiwari
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Manmohan Kapur
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
42
|
Nájera C, Beletskaya IP, Yus M. Metal-catalyzed regiodivergent organic reactions. Chem Soc Rev 2019; 48:4515-4618. [DOI: 10.1039/c8cs00872h] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses metal-catalysed regiodivergent additions, allylic substitutions, CH-activation, cross-couplings and intra- or intermolecular cyclisations.
Collapse
Affiliation(s)
- Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| | - Irina P. Beletskaya
- Chemistry Department
- M. V. Lomonosov Moscow State University
- 119992 Moscow
- Russia
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| |
Collapse
|
43
|
Li M, Wang JH, Li W, Wen LR. Metal-Free Direct Construction of 2-(Oxazol-5-yl)phenols from N-Phenoxyamides and Alkynylbenziodoxolones via Sequential [3,3]-Rearrangement/Cyclization. Org Lett 2018; 20:7694-7698. [DOI: 10.1021/acs.orglett.8b03427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
44
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
45
|
Maity S, Das D, Sarkar S, Samanta R. Direct Pd(II)-Catalyzed Site-Selective C5-Arylation of 2-Pyridone Using Aryl Iodides. Org Lett 2018; 20:5167-5171. [DOI: 10.1021/acs.orglett.8b02112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saurabh Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
46
|
Joy M, Anabha ER, Gopi S, Mathew B, Kumar S A, Mathews A. Structural and optical profile of a multifunctionalized 2-pyridone derivative in a crystal engineering perspective. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:807-815. [PMID: 29973420 DOI: 10.1107/s2053229618007490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/17/2018] [Indexed: 11/10/2022]
Abstract
The supramolecular structural features of organic molecules are very important with regard to their widespread properties in both solids and solutions. Herein, we describe the synthesis of a novel multifunctional 2-pyridone derivative, namely 6-(4-chlorophenyl)-5-formyl-4-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carbonitrile, C14H9ClN2O2S, denoted P1, and its structural features were established through X-ray crystallography. A Hirshfeld surface analysis followed by a two-dimensional fingerprint plot analysis was carried out. A frontier molecular orbital investigation and natural bond orbital (NBO) calculations explored the charge-transfer interactions associated with the molecular system. The optical properties of the 2-pyridone derivative were elucidated through UV-Vis absorption and emission spectroscopy, indicating a strong blue emissive nature with a colour purity of 82.5%, a short-lived lifetime and a large Stokes shift. Time-dependent density functional theory (TD-DFT) was used to gain some insight into the absorption behaviour and emissive characteristics of P1.
Collapse
Affiliation(s)
- Monu Joy
- School of Pure and Applied Physics, Mahatma Gandhi University, Kerala 686 560, India
| | - E R Anabha
- Department of Chemistry, Sree Narayana College, Thrissur, Kerala 680 566, India
| | - Subash Gopi
- School of Pure and Applied Physics, Mahatma Gandhi University, Kerala 686 560, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678 557, India
| | - Ajeesh Kumar S
- School of Pure and Applied Physics, Mahatma Gandhi University, Kerala 686 560, India
| | - Annie Mathews
- Department of Chemistry, Baselius College, Kerala 686 001, India
| |
Collapse
|
47
|
Khake SM, Jain S, Patel UN, Gonnade RG, Vanka K, Punji B. Mechanism of Nickel(II)-Catalyzed C(2)–H Alkynylation of Indoles with Alkynyl Bromide. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shrikant M. Khake
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | | | - Ulhas N. Patel
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | | | | | - Benudhar Punji
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| |
Collapse
|
48
|
Patel UN, Punji B. A Copper- and Phosphine-Free Nickel(II)-Catalyzed Method for C−H Bond Alkynylation of Benzothiazoles and Related Azoles. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ulhas N. Patel
- Organometallic Synthesis and Catalysis Group; Chemical Engineering Division; CSIR-National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune- 411 008 Maharashtra India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group; Chemical Engineering Division; CSIR-National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune- 411 008 Maharashtra India
| |
Collapse
|
49
|
Prendergast AM, McGlacken GP. Transition Metal Mediated C-H Activation of 2-Pyrones, 2-Pyridones, 2-Coumarins and 2-Quinolones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aisling M. Prendergast
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; Cork Ireland
| | - Gerard P. McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; Cork Ireland
| |
Collapse
|
50
|
Grenet E, Das A, Caramenti P, Waser J. Rhodium-catalyzed C-H functionalization of heteroarenes using indoleBX hypervalent iodine reagents. Beilstein J Org Chem 2018; 14:1208-1214. [PMID: 29977388 PMCID: PMC6009173 DOI: 10.3762/bjoc.14.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
The C–H indolation of heteroarenes was realized using the benziodoxolone hypervalent iodine reagents indoleBXs. Functionalization of the C–H bond in bipyridinones and quinoline N-oxides catalyzed by a rhodium complex allowed to incorporate indole rings into aza-heteroaromatic compounds. These new transformations displayed complete regioselectivity for the C-6 position of bipyridinones and the C-8 position of quinoline N-oxides and tolerated a broad range of functionalities, such as halogens, ethers, or trifluoromethyl groups.
Collapse
Affiliation(s)
- Erwann Grenet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Ashis Das
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Paola Caramenti
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|