1
|
Rothstein A, Trifonov L, Keidar N, Afri M, Korshin EE, Gruzman A. A Unified Synthesis of Electron-Deficient 1,4- and 1,1,4-Substituted 1,3-Dienes through a Base-Promoted Allylation Followed by Retro-Michael Vinylogous Dehydrosulfinylation. Org Lett 2024; 26:8565-8571. [PMID: 39356088 DOI: 10.1021/acs.orglett.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
We disclose a general 2-step synthesis of electron-poor 1,4- and 1,1,4-substituted buta-1,3-dienes bearing electron-withdrawing substituents at both termini of the conjugated system. The method relies on a base-promoted C-allylation of primary or secondary alkylsulfones with γ-bromocrotonate or related amide, nitrile, or sulfone and subsequent vinylogous retro-Michael dehydrosulfinylation. The geometry of the resulting dienes is substrate-dependent, and predominantly E,E-dienes are formed from E-electrophiles. This phosphorus- and transition-metal-free method tolerates a variety of functionalities and could serve as a supplement to Wittig, HWE, and Julia olefinations.
Collapse
Affiliation(s)
- Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lena Trifonov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Niv Keidar
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Edward E Korshin
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
2
|
Song JR, Li XJ, Shi J, Chi Q, Wu W, Ren H. Direct synthesis of N-functionalized indoles through isomerization of azomethine ylides. Org Biomol Chem 2024; 22:741-744. [PMID: 38170630 DOI: 10.1039/d3ob01393f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An unexpected isomerization of azomethine ylides generated in situ from isatin with indoline-2-carboxylic acid has been disclosed, providing direct access to N-functionalized indole scaffolds. This protocol has good functional group tolerance and provides various 3-(1H-indol-1-yl)indolin-2-one derivatives in moderate to high yields simply by using alcohol as the solvent, with no additional additive being required.
Collapse
Affiliation(s)
- Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Xiong-Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| |
Collapse
|
3
|
Wang Y, Yan L, Yan Y, Li S, Lu H, Liu J, Dong J. Dipolarophile-Controlled Regioselective 1,3-Dipolar Cycloaddition: A Switchable Divergent Access to Functionalized N-Fused Pyrrolidinyl Spirooxindoles. Int J Mol Sci 2023; 24:ijms24043771. [PMID: 36835183 PMCID: PMC9966135 DOI: 10.3390/ijms24043771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
- Correspondence: or (Y.W.); (J.D.)
| | - Lijun Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Yuxin Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Sujin Li
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Hongying Lu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jia Liu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jianwei Dong
- Colleage of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
- Correspondence: or (Y.W.); (J.D.)
| |
Collapse
|
4
|
Palomba M, De Monte E, Mambrini A, Bagnoli L, Santi C, Marini F. A three-component [3 + 2]-cycloaddition/elimination cascade for the synthesis of spirooxindole-pyrrolizines. Org Biomol Chem 2021; 19:667-676. [PMID: 33399163 DOI: 10.1039/d0ob02321c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A three-component synthesis of novel spirooxindole-tetrahydropyrrolizines from secondary α-aminoacids, isatins and vinyl selenones has been disclosed. Products were formed in good yields and high diastereoselectivity by 1,3-dipolar cycloaddition of in situ generated azomethine ylides followed by spontaneous elimination of benzeneseleninic acid. Good regioselectivities with aryl substituted vinyl selenones were observed. The method showed good functional group tolerance, providing a direct approach to biologically relevant spirooxindoles under mild reaction conditions.
Collapse
Affiliation(s)
- Martina Palomba
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Emanuela De Monte
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Andrea Mambrini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| | - Francesca Marini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1 - 06123 Perugia, Italy.
| |
Collapse
|
5
|
Zimnitskiy NS, Denikaev AD, Barkov AY, Kutyashev IB, Korotaev VY, Sosnovskikh VY. Catalyst-free Tandem 1,3-Dipolar Cycloaddition/Aldol Condensation: Diastereoselective Construction of the Azatetraquinane Skeleton. J Org Chem 2020; 85:8683-8694. [PMID: 32517470 DOI: 10.1021/acs.joc.0c01127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The one-pot regioselective and diastereoselective method for the synthesis of 5-(het)aroyl-7-(het)arylhexahydrobenzo[4,5]pentaleno[1,6a-b](thia)pyrrolizine-6,12-diones from accessible 1,5-di(het)arylpent-4-ene-1,3-diones or curcuminoids in 38-98% yield was developed. This reaction proceeds as a sequence of 1,3-dipolar cycloaddition of azomethine ylide generated in situ from ninhydrin and (thia)proline at the C═C bond of corresponding enedione, followed by spontaneous intramolecular aldol condensation and leads to the formation of an azatetraquinane scaffold.
Collapse
Affiliation(s)
- Nikolay S Zimnitskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Andrey D Denikaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Alexey Y Barkov
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Igor B Kutyashev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Vladislav Y Korotaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
6
|
Filatov AS, Wang S, Khoroshilova OV, Lozovskiy SV, Larina AG, Boitsov VM, Stepakov AV. Stereo- and Regioselective 1,3-Dipolar Cycloaddition of the Stable Ninhydrin-Derived Azomethine Ylide to Cyclopropenes: Trapping of Unstable Cyclopropene Dipolarophiles. J Org Chem 2019; 84:7017-7036. [PMID: 31066276 DOI: 10.1021/acs.joc.9b00753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A stereo- and regioselective 1,3-dipolar cycloaddition of the stable ninhydrin-derived azomethine ylide [2-(3,4-dihydro-2 H-pyrrolium-1-yl)-1-oxo-1 H-inden-3-olate, DHPO] to differently substituted cyclopropenes has been established. As a result, an efficient synthetic protocol was developed for the preparation of biologically relevant spiro[cyclopropa[ a]pyrrolizine-2,2'-indene] derivatives. DHPO has proved to be an effective trap for such highly reactive and unstable substrates as parent cyclopropene, 1-methylcyclopropene, 1-phenylcyclopropene, and 1-halo-2-phenylcyclopropenes. It has also been found that 3-nitro-1,2-diphenylcyclopropene undergoes a nucleophilic substitution reaction in alcohols and thiols to afford 3-alkoxy- and 3-arylthio-substituted 1,2-diphenylcyclopropenes, which can be captured as corresponding 1,3-dipolar cycloadducts in the presence of DHPO. These new approaches provide a straightforward strategy for the synthesis of functionally substituted cyclopropa[ a]pyrrolizine derivatives. The factors governing regio- and stereoselectivity have been revealed by means of quantum mechanical calculations (M11 density functional theory), including previously unreported Nylide- Hcyclopropene second-orbital interactions. The outcome of this work contributes to the study of 1,3-dipolar cycloaddition, as well as enriches chemistry of cyclopropenes and methods for the construction of polycyclic compounds with cyclopropane fragments.
Collapse
Affiliation(s)
- Alexander S Filatov
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Siqi Wang
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Olesya V Khoroshilova
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Stanislav V Lozovskiy
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Anna G Larina
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation
| | - Vitali M Boitsov
- Saint Petersburg Academic University , ul. Khlopina 8/3 , 194021 St. Petersburg , Russian Federation.,Pavlov First Saint Petersburg State Medical University , ul. L'va Tolstogo 6/8 , 197022 St. Petersburg , Russian Federation
| | - Alexander V Stepakov
- Institute of Chemistry , Saint Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russian Federation.,Saint Petersburg State Institute of Technology , Moskovskii pr. 26 , 190013 St. Petersburg , Russian Federation
| |
Collapse
|
7
|
Ratushnyy M, Kamenova M, Gevorgyan V. A mild light-induced cleavage of the S-O bond of aryl sulfonate esters enables efficient sulfonylation of vinylarenes. Chem Sci 2018; 9:7193-7197. [PMID: 30288238 PMCID: PMC6148202 DOI: 10.1039/c8sc02769b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/23/2018] [Indexed: 01/03/2023] Open
Abstract
A new mode of S-O bond activation has been discovered, which constitutes novel reactivity of easily available and bench-stable arylsulfonate phenol esters. This protocol enables access to putative sulfonyl radical intermediates, which enable straightforward access to valuable vinyl sulfones.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St., Room 4500 SES , Chicago , Illinois 60607 , USA .
| | - Monika Kamenova
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St., Room 4500 SES , Chicago , Illinois 60607 , USA .
| | - Vladimir Gevorgyan
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St., Room 4500 SES , Chicago , Illinois 60607 , USA .
| |
Collapse
|
8
|
Yuan Y, Zheng ZJ, Li L, Bai XF, Xu Z, Cui YM, Cao J, Yang KF, Xu LW. Silicon-based Bulky Group−Tuned Parallel Kinetic Resolution in Copper-Catalyzed 1,3-Dipolar Additions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Yuan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
- Suzhou Research Insititue and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou People's Republic of China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
- Suzhou Research Insititue and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou People's Republic of China
| |
Collapse
|
9
|
Mohammadi Ziarani G, Moradi R, Lashgari N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Moss SG, Pocock IA, Sweeney JB. Tandem Aryne-Capture/Sigmatropic Rearrangement as a Metal-Free Entry to Functionalized N
-Aryl Pyrrolidines. Chemistry 2016; 23:101-104. [DOI: 10.1002/chem.201605290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sam G. Moss
- Department of Chemical Sciences; University of Huddersfield, Queensgate; Huddersfield HD1 3DH UK
| | - Ian A. Pocock
- Department of Chemical Sciences; University of Huddersfield, Queensgate; Huddersfield HD1 3DH UK
| | - Joseph B. Sweeney
- Department of Chemical Sciences; University of Huddersfield, Queensgate; Huddersfield HD1 3DH UK
| |
Collapse
|