1
|
Lim SH, Kim MJ, Wee KR, Cho DW. Reaction-Environment-Dependent Photoaddition Reactions of N-Phenyl Amino Acid Esters Possessing a Silyl Group with Fullerene C 60: Selective Formation of Aminomethyl-1,2-dihydrofullerenes vs Fulleropyrrolidines. J Org Chem 2023; 88:12294-12310. [PMID: 37602462 DOI: 10.1021/acs.joc.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The current study investigates SET-promoted photoaddition reactions of the silyl-group-containing N-phenylglycinates and N-phenylalaninates, N-((trimethylsilyl)methyl)-N-phenyl-substituted glycinates and alaninates, respectively, with fullerene C60 to explore how the types of amino acid esters (AAEs) and molecular oxygen affect the photoaddition reaction efficiencies and chemoselectivity of in situ formed radical cations of AAEs. The results showed that under deoxygenated (N2-purged) conditions, photoreactions of N-phenylglycinates with C60 produced aminomethyl-1,2-dihydrofullerenes through the addition of α-amino radicals arising by sequential SET and desilylation processes from initially formed secondary anilines to C60. In oxygenated conditions, photoreactions of N-phenylglycinates with C60, albeit less efficient, took place to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of azomethine ylides to C60 assisted by in situ formed 1O2. The same types of photoproducts were observed with N-phenylalaninates, though the reactions were less efficient. The use of methylene blue (MB) as a photosensitizer in the photoreactions under oxygenated conditions was especially effective in enhancing the efficiency of fulleropyrrolidine formation. These results demonstrate that photoaddition reactions of silyl-tether-containing N-phenyl AAEs with C60 can be governed by the reaction conditions and the presence or absence of a photosensitizer employed.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Min-Ji Kim
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
2
|
Lim SH, Kim MJ, Wee KR, Lim DH, Kim YI, Cho DW. Silyl Tether-Assisted Photooxygenation of Electron-Deficient Enaminoesters: Direct Access to Oxamate Formation. J Org Chem 2023; 88:172-188. [PMID: 36516444 DOI: 10.1021/acs.joc.2c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photooxygenation reactions of electron-deficient enaminoesters bearing an oxophilic silyl tether at the α-position of the nitrogen atom using methylene blue (MB) were explored to develop a mild and efficient photochemical strategy for oxidative C-C double bond cleavage reactions via singlet oxygen (1O2). Photochemically generated 1O2, through energy transfer from the triplet excited state of MB (3MB*) to molecular oxygen (3O2), was added across a C-C double bond moiety of enaminoesters to form perepoxides, which rearranged to form dioxetane intermediates. The cycloreversion of the formed dioxetane via both C-C and O-O bond cleavage processes led to the formation of oxamates. Importantly, contrary to alkyl group tether-substituted electron-deficient enaminoesters that typically disfavor photooxygenation, the silyl tether-substituted analogues undergo this photochemical transformation efficiently with the assistance of a silyl tether, which facilitates formation of the perepoxide. The observations in this study provide useful information about photosensitized oxygenation reactions of unsaturated C-C bonds, and, moreover, this photochemical strategy can be utilized as a mild and feasible method for the preparation of diversely functionalized carbonyl compounds including oxamates.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Min-Ji Kim
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Dong Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Young-Il Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|
3
|
Lazareva N, Gostevskii B, Albanov A, Molokeev M, Vashchenko A. N,N‐Bis(Silylmethyl)anilines: Synthesis and structure. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Lim SH, Jang H, Cho DW. Fullerene C 60 promoted photochemical hydroamination reactions of an electron deficient alkyne with trimethylsilyl group containing tertiary N-alkylbenzylamines. RSC Adv 2021; 11:5914-5922. [PMID: 35423137 PMCID: PMC8694821 DOI: 10.1039/d1ra00166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
C60-promoted photoaddition reactions of both trimethylsilyl- and a variety of alkyl group containing tertiary benzylamines (i.e., N-α-trimethylsilyl-N-alkylbenzylamines) with dimethyl acetylenedicarboxylate (DMAD) were carried out to explore the synthetic utility of trimethylsilyl group containing tertiary amines as a substrate in the photochemical hydroamination reactions with dimethyl acetylenedicarboxylate (DMAD). The results showed that photoreactions of all the trimethylsilyl containing N-alkylbenzylamines with DMAD, under an O2-purged environment, produced non-silyl containing enamines efficiently through a pathway involving addition of secondary amines to DMAD, the former of which are produced by hydrolytic cleavage of in situ formed iminium ions. Exceptionally, five-membered N-heterocyclic rings, pyrroles, could be produced competitively in photoreaction of bulky alkyl (i.e., tert-butyl) group substituted benzylamines through a pathway involving 1,3-dipolar cycloaddition of azomethine ylides to DMAD. Furthermore, C60-sensitized photochemical reactions of non-silyl containing benzylamines with DMAD under oxygenated conditions took place in a less efficient and non-regioselective manner to produce enamine photoadducts. The observations made in this study show that regioselectivity of C60-promoted photochemical reactions of N-α-trimethylsilyl-N-alkylbenzylamines, leading to formation of secondary amines, can be controlled by the presence of the trimethylsilyl group, and that these trimethylsilyl containing tertiary amines can serve as a precursor of secondary amines for hydroamination reactions with a variety of electron deficient acetylenes.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Korea
| | - Hannara Jang
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Korea
| |
Collapse
|
5
|
Lim SH, Ahn M, Wee KR, Shim JH, Choi J, Ahn DS, Cho DW. Control of Chemoselectivity of SET-Promoted Photoaddition Reactions of Fullerene C 60 with α-Trimethylsilyl Group-Containing N-Alkylglycinates Yielding Aminomethyl-1,2-dihydrofullerenes or Fulleropyrrolidines. J Org Chem 2020; 85:12882-12900. [PMID: 32969218 DOI: 10.1021/acs.joc.0c01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowledge about factors that govern chemoselectivity is pivotal to the design of reactions that are utilized to produce complex organic substances. In the current study, single-electron transfer (SET)-promoted photoaddition reactions of fullerene C60 with both trimethylsilyl and various alkyl group-containing glycinates and ethyl N-alkyl-N-((trimethylsilyl)methyl)glycinates were explored to evaluate how the nature of N-alkyl substituents of glycinate substrates and reaction conditions govern the chemoselectivity of reaction pathways followed. The results showed that photoreactions of C60 with glycinates, performed in deoxygenated conditions, produced aminomethyl-1,2-dihydrofullerenes efficiently through a pathway involving the addition of α-amino radical intermediates that are generated by sequential SET-solvent-assisted desilylation of glycinate substrates to C60. Under oxygenated conditions, photoreactions of glycinate substrates, except N-benzyl-substituted analogues, did not take place efficiently owing to quenching of 3C60* by oxygen. Interestingly, N-benzyl-substituted glycinates did react under these conditions to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of in situ formed azomethine ylides to C60. The ylide intermediates were formed by regioselective H-atom transfer from glycinates by singlet oxygen. Furthermore, methylene blue (MB)-photosensitized reactions of C60 with glycinates under oxygenated conditions took place efficiently to produce fulleropyrrolidines independent of the nature of N-alkyl substituents of glycinates.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Mina Ahn
- Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Kyung-Ryang Wee
- Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Jun Ho Shim
- Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Doo-Sik Ahn
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|
6
|
|
7
|
The conventional turns rather than irregular γ-/β-turn secondary structures accounting for the antitumor activities of cyclic peptide Phakellistatin 6 analogs. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lim SH, Cho DW. Photoaddition reactions of azomethine ylides generated from α-aminonitriles to fullerene C60: Formation of fulleropyrrolidines and reaction efficiencies changes depending on reaction conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Ma W, Zhang D, Wang H, Li F, Liu L, Liu X, Liu C, Asiri AM, Alamry KA. Synthesis of Arylvinyl‐Substituted Fulleropyrrolidines: Novel Reaction of [60]Fullerene with Cinnamaldehydes and Amines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wan Ma
- Hubei Collaborative Innovation Center for Advanced Organic Cheical MaterialsMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesKey Laboratory of Green Preparation and Application for Functional MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringHubei University Wuhan 430062 China
| | - Duo Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Cheical MaterialsMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesKey Laboratory of Green Preparation and Application for Functional MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringHubei University Wuhan 430062 China
| | - Hui‐Juan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Center for Magnetic ResonanceWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Fa‐Bao Li
- Hubei Collaborative Innovation Center for Advanced Organic Cheical MaterialsMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesKey Laboratory of Green Preparation and Application for Functional MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringHubei University Wuhan 430062 China
| | - Li Liu
- Hubei Collaborative Innovation Center for Advanced Organic Cheical MaterialsMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesKey Laboratory of Green Preparation and Application for Functional MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringHubei University Wuhan 430062 China
| | - Xu‐Feng Liu
- Hubei Collaborative Innovation Center for Advanced Organic Cheical MaterialsMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesKey Laboratory of Green Preparation and Application for Functional MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringHubei University Wuhan 430062 China
| | - Chao‐Yang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Center for Magnetic ResonanceWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Abdullah M. Asiri
- Department of ChemistryFaculty of ScienceKing Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Department of ChemistryFaculty of ScienceKing Abdulaziz University, Jeddah 21589 Saudi Arabia
| |
Collapse
|
10
|
Li YF, Zhang D, Wang HJ, Li FB, Sun L, Liu L, Liu CY, Asiri AM, Alamry KA. Metal-Free Synthesis of N-Alkyl-2,5-Unsubstituted/Monosubstituted Fulleropyrrolidines: Reaction of [60]Fullerene with Paraformaldehyde and Amines. J Org Chem 2019; 84:2922-2932. [PMID: 30729784 DOI: 10.1021/acs.joc.9b00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of scarce N-alkyl-2,5-unsubstituted/monosubstituted fulleropyrrolidines were synthesized in moderate to excellent yields by the simple one-step thermal reaction of [60]fullerene with primary/secondary amines in the presence of paraformaldehyde without the addition of valuable metal salts. Intriguingly, the reaction with primary amines unexpectedly afforded N-alkyl-2,5-unsubstituted fulleropyrrolidines instead of the anticipated 2,5-monosubstituted fulleropyrrolidines. A plausible reaction pathway is proposed to elucidate the above-mentioned reaction process based on the experimental results.
Collapse
Affiliation(s)
- Yun-Fei Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Duo Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Hui-Juan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Fa-Bao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Liang Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Li Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Chao-Yang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
11
|
Lim SH, Atar AB, Bae G, Wee KR, Cho DW. Photoaddition reactions of N-benzylglycinates containing α-trimethylsilyl group with dimethyl acetylenedicarboxylate: competitive formation of pyrroles vs. β-enamino esters. RSC Adv 2019; 9:5639-5648. [PMID: 35515931 PMCID: PMC9060770 DOI: 10.1039/c8ra09996k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/02/2019] [Indexed: 01/23/2023] Open
Abstract
A study was conducted to gain insight into the preparative potential of photosensitized reactions of acyclic N-benzylglycinates containing an α-trimethylsilyl group with dimethyl acetylenedicarboxylate (DMAD). The photosensitizers employed in the reactions include 9,10-dicyanoanthracene (DCA), 1,4-dicyanonaphthalene (DCN), rose bengal (RB) and fullerene C60. The results show that photoirradiation of oxygenated solutions containing the photosensitizers, glycinates and dimethyl acetylenedicarboxylate leads to competitive formation of pyrroles and β-enamino-esters. The distributions of pyrrole and β-enamino-ester products formed in these reactions are highly influenced by the electronic nature of the phenyl ring substituent on the benzylglycinates and the photosensitizer used. These photoaddition reactions take place via mechanistic pathways involving competitive formation of azomethine ylides and secondary amines, generated by a mechanistic routes involving initial SET from the benzylglycinates to photosensitizers.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Amol B Atar
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Gunoh Bae
- Department of Chemistry, Daegu University Gyeongsan Gyeongbuk 38453 Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University Gyeongsan Gyeongbuk 38453 Republic of Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| |
Collapse
|
12
|
Lim SH, Oh J, Nahm K, Noh S, Shim JH, Kim C, Kim E, Cho DW. Photochemical Approach for the Preparation of N-Alkyl/Aryl Substituted Fulleropyrrolidines: Photoaddition Reactions of Silyl Group Containing α-Aminonitriles with Fullerene C 60. J Org Chem 2019; 84:1407-1420. [PMID: 30624063 DOI: 10.1021/acs.joc.8b02804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photochemical reactions of C60 with N-(trimethylsilyl)methyl substituted and N-alkyl/aryl substituted α-aminonitriles were explored to evaluate the scope and reaction efficiency depending on the structural nature of amine substrates. The results showed that photoreactions of C60 with trimethylsilyl group containing N-alkyl amines produced predominantly both trimethylsilyl and cyano group containing trans-pyrrolidine ring fused fulleropyrrolidines in a chemo- and stereoselective manner. Interestingly, photoreactions of C60 with N-branched alkyl substituted amines led to exclusive formation of non-silyl containing cycloadducts. In contrast to those of N-alkyl substituted α-aminonitriles, photoreactions of N-(trimethylsilyl)methyl and N-aryl substituted α-aminonitriles gave rise to the formation of both trans- and cis-isomeric fulleropyrrolidines with an inefficient and non-stereoselective manner. The feasible mechanistic pathways leading to generation of fulleropyrrolidines are 1,3-dipolar cycloaddition of the azomethine ylides, generated by either a single electron transfer (SET) (under N2-purged conditions) or H atom abstraction (under O2-purged conditions) process, to fullerene C60. The stereoselectivities of photoproducts depending on the nature of amines are likely to be associated with conformational stabilities of in situ generated azoemthine ylides.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Jiin Oh
- Department of Chemistry , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Keepyung Nahm
- Department of Chemistry , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Sunguk Noh
- Department of Chemistry , Daegu Univeristy , Gyeongsan , 38453 , Republic of Korea
| | - Jun Ho Shim
- Department of Chemistry , Daegu Univeristy , Gyeongsan , 38453 , Republic of Korea
| | - Cheolhee Kim
- College of Pharmacy , Chosun University , Gwangju 61452 , Republic of Korea
| | - Eunae Kim
- College of Pharmacy , Chosun University , Gwangju 61452 , Republic of Korea
| | - Dae Won Cho
- Department of Chemistry , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| |
Collapse
|
13
|
Lim SH, Cho DW, Choi J, An H, Shim JH, Mariano PS. SET-promoted photoaddition reactions of fullerene C60 with tertiary N-trimethylsilylmethyl substituted α-aminonitriles. Approach to the synthesis of fulleropyrrolidine nitriles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Jeong HC, Lim SH, Sohn Y, Kim YI, Jang H, Cho DW, Mariano PS. Electronic and steric effects controlling efficiencies of photoaddition reactions of fullerene C60 with N-α-trimethylsilyl-N-alkyl-N-benzylamines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Tuten BT, Menzel JP, Pahnke K, Blinco JP, Barner-Kowollik C. Pyreneacyl sulfides as a visible light-induced versatile ligation platform. Chem Commun (Camb) 2017; 53:4501-4504. [DOI: 10.1039/c7cc00711f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a visible light responsive moiety capable of generating highly reactive thioaldehydes.
Collapse
Affiliation(s)
- Bryan T. Tuten
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Jan P. Menzel
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Kai Pahnke
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - James P. Blinco
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| |
Collapse
|
16
|
Hu J, Li G, Huang ZB, Zhang J, Shi DQ, Zhao Y. Pd-Catalyzed thiophene directed regioselective functionalization of arenes: a direct approach to multiply-substituted benzyl amines. Org Chem Front 2017. [DOI: 10.1039/c7qo00236j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A thiophene directed ortho-C–H functionalization via a palladium catalyst in the synthesis of multiply-substituted benzyl amines has been developed.
Collapse
Affiliation(s)
- Jundie Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Guobao Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Zhi-Bin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jingyu Zhang
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| |
Collapse
|
17
|
Jeong HC, Lim SH, Cho DW, Kim SH, Mariano PS. Single electron transfer promoted photoaddition reactions of α-trimethylsilyl substituted secondary N-alkylamines with fullerene C 60. Org Biomol Chem 2016; 14:10502-10510. [PMID: 27766336 DOI: 10.1039/c6ob02069k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single electron transfer (SET) promoted photoaddition reactions of secondary N-α-trimethylsilyl-N-alkylamines to C60 were explored to gain a deeper understanding of the mechanistic pathways followed and to expand the library of novel types of organofullerenes that can be generated using this approach. The results show that photoreactions of 10% EtOH-toluene solutions containing C60 and N-α-trimethylsilyl-N-alkylamines produce either aminomethyl-1,2-dihydrofullerenes or symmetric fulleropyrrolidines as major products depending on the nature of alkyl substituents. In contrast, photoreactions of 10% EtOH-ODCB solutions of these amines with C60 mainly lead to the formation of symmetric fulleropyrrolidines. Based on the analysis of product distributions and the results of earlier studies, two feasible mechanistic pathways are proposed for these processes. One route is initiated by SET from the amine substrates to the triplet-excited state of C60 to form the corresponding aminium radicals and C60 anion radicals. EtOH-promoted desilylation of the aminium radicals then takes place to produce aminomethyl radicals which can either add to C60 or couple with the C60 radical anions to form respective radicals or anion precursors of aminomethyl-1,2-dihydrofullerene products. The competing pathway leading to the generation of symmetric fulleropyrrolidines also involves the formation of aminomethyl radicals by using the sequential SET-desilylation process. In this route, the aminomethyl radicals are oxidized by SET to C60 to form iminium ions, which are then transformed to azomethine ylides by a pathway involving a second molecule of the secondary amine. Dipolar cycloaddition of the azomethine ylides to C60 forms the symmetric fulleropyrrolidine cycloadducts. Importantly, the observation that symmetric fulleropyrrolidines are the sole products formed in photoreactions between N-α-trimethylsilyl-N-alkylamines and C60 in 10% EtOH-ODCB has synthetic significance.
Collapse
Affiliation(s)
- Ho Cheol Jeong
- Department of Energy Convergence Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea.
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea.
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, Korea
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
18
|
Sharma S, Sultan S, Devari S, Shah BA. Radical–radical cross coupling reactions of photo-excited fluorenones. Org Biomol Chem 2016; 14:9645-9649. [DOI: 10.1039/c6ob01879c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical–radical cross coupling reactions of photoexcited 9-fluorenones have been accomplished for the first time, leading to the synthesis of 9-alkyl, pyrollidinyl and spiro-THF derivatives of 9-fluorenones.
Collapse
Affiliation(s)
- Simmi Sharma
- Academy of Scientific and Innovative Research
- Natural Product Microbes
- CSIR-Indian Institute of Integrative Medicine
- Jammu-Tawi
- India
| | - Shaista Sultan
- Academy of Scientific and Innovative Research
- Natural Product Microbes
- CSIR-Indian Institute of Integrative Medicine
- Jammu-Tawi
- India
| | - Shekaraiah Devari
- Academy of Scientific and Innovative Research
- Natural Product Microbes
- CSIR-Indian Institute of Integrative Medicine
- Jammu-Tawi
- India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research
- Natural Product Microbes
- CSIR-Indian Institute of Integrative Medicine
- Jammu-Tawi
- India
| |
Collapse
|