1
|
You Y, Li TT, Sun TJ, Zhang YP, Wang ZH, Zhao JQ, Yuan WC. Enantioselective Construction of Vicinal Quaternary-Tetrasubstituted Carbon Stereocenters by Copper-Catalyzed Decarboxylative Propargylic Substitution. Org Lett 2022; 24:7671-7676. [PMID: 36226893 DOI: 10.1021/acs.orglett.2c03244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective construction of vicinal tetrasubstituted carbon stereocenters is a formidable challenge in organic synthesis. A copper-catalyzed asymmetric decarboxylative propargylic substitution with 3-amino oxindoles as trisubstituted carbon nucleophiles and propargylic cyclic carbonates as tertiary carbon electrophiles was developed. A range of 3-amino-3,3'-disubstituted oxindoles bearing vicinal quaternary-tetrasubstituted carbon stereocenters were obtained in high yields and good to excellent stereoselectivities (up to 98% yield, >20:1 dr, and 98.5:1.5 er).
Collapse
Affiliation(s)
- Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ting-Jia Sun
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Senboku H, Minemura Y, Suzuki Y, Matsuno H, Takakuwa M. Synthesis of N-Boc-α-amino Acids from Carbon Dioxide by Electrochemical Carboxylation of N-Boc-α-aminosulfones. J Org Chem 2021; 86:16077-16083. [PMID: 34550701 DOI: 10.1021/acs.joc.1c01516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical reduction of N-Boc-α-aminosulfones in DMF using an undivided cell equipped with a Pt plate cathode and an Mg rod anode under atmospheric pressure of bubbling carbon dioxide through the solution under constant current conditions resulted in a reductive C-S bond cleavage with elimination of benzenesulfinate ion generating the corresponding anion species followed by fixation of carbon dioxide to give the corresponding N-Boc-α-amino acids in moderate to good yields.
Collapse
Affiliation(s)
- Hisanori Senboku
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yoshihito Minemura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuto Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hidetoshi Matsuno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mayu Takakuwa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Yang XP, Lv HP, Yang HD, Wang BL, Wang XW. Box-copper catalyzed cascade asymmetric amidation for chiral exo-methylene aminoindoline derivatives. Org Biomol Chem 2021; 19:9373-9378. [PMID: 34673876 DOI: 10.1039/d1ob01242h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective copper-catalyzed cascade inter- and intramolecular amidation was achieved between ethynyl benzoxazinanones and α-halohydroxamates in the presence of an indapybox ligand. The one-pot cascade transformation was triggered by the attack of hydroxamates to dipolar copper-allenylidene intermediates, followed by a nucleophilic annulation reaction. Thus, a series of exo-methylene 3-aminoindoline derivatives were obtained in good yields with high enantioselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Xiao-Peng Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Peng Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
4
|
Zhang Y, Ye D, Shen L, Liang K, Xia C. Tandem Photoredox-Chiral Phosphoric Acid Catalyzed Radical-Radical Cross-Coupling for Enantioselective Synthesis of 3-Hydroxyoxindoles. Org Lett 2021; 23:7112-7117. [PMID: 34459613 DOI: 10.1021/acs.orglett.1c02510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photochemical protocol that couples diarylamines and α-ketoesters to afford the chiral 3-hydroxyoxindoles through tandem photoredox and chiral phosphoric acid catalysis is developed. The reaction involves an enantioselective photochemical radical-radical cross-coupling process. The chiral phosphoric acid is discovered to play crucial roles by decreasing the reductive potentials of α-ketoesters and stereocontrolling the downstream asymmetric radical-radical cross-coupling via the formation of pentacoordinate complex.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Dan Ye
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Yang Z, He H, Tian R, Wu R, Hu S, Wu Y, Zhou H. A zinc/PyBisulidine catalyzed asymmetric Mannich reaction of N-tosyl imines with 3-acyloxy-2-oxindoles. Org Biomol Chem 2021; 19:7460-7469. [PMID: 34612364 DOI: 10.1039/d1ob01328a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Zn-PyBisulidine catalyzed asymmetric Mannich reaction of 3-acyloxy-2-oxindoles has been developed. Various quaternary substituted 3-acyloxy-2-oxindoles bearing vicinal amino alcohol motifs were obtained in good to excellent yields with moderate to excellent dr and excellent enantioselectivities. The utility of this reaction was demonstrated by the easy removal of the acyl group to give C3-hydroxy derivatives and their application as a key skeleton of the ligand for the Ni-catalyzed enantioselective Henry reaction.
Collapse
Affiliation(s)
- Zinan Yang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang T, Peng Y, Li G, Luo Y, Ye Y, Huo X, Zhang W. Synergistic Ir/Cu Catalysis for Asymmetric Allylic Alkylation of Oxindoles: Enantio- and Diastereoselective Construction of Quaternary and Tertiary Stereocenters. Chemistry 2021; 27:10255-10260. [PMID: 33982366 DOI: 10.1002/chem.202101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 01/14/2023]
Abstract
3,3-Disubstituted oxindoles bearing quaternary and tertiary stereogenic centers are privileged structural motifs, which widely exist in pharmaceutical and natural products. Herein, a highly regio-, enantio-, and diastereoselective allylic alkylation of 3-alkyl oxindoles through synergistic iridium and copper catalysis is described, which provides a series of 3,3-disubstituted oxindole derivatives containing adjacent quaternary and tertiary stereogenic centers in excellent yields, enantiomeric excess, and diastereomeric ratio (for 30 examples, up to 97 % yield, >99 % ee, and >20 : 1 dr). This method provides exclusive branched selectivity, excellent enantio- and diastereoselectivities, and good functional compatibility. Control experiments suggested that the chiral copper catalyst is required for achieving high reactivities and diastereoselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Tianhong Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, 450052, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Wei S, Bao X, Nawaz S, Qu J, Wang B. Identification of a tartrate-based modular guanidine towards highly asymmetric Michael addition of 3-aminooxindoles to nitroolefins. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Kim JN, Lee S. Synthesis of Spirooxindoles Bearing 1,
3‐Oxathiolane
‐2‐thione Moiety From
Isatin‐Derived
Propargylic Alcohols. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jae Nyoung Kim
- Department of Chemistry Chonnam National University Gwangju 500‐757 Korea
| | - Sangku Lee
- Anticancer Agent Research Center KRIBB, Cheongwon 363‐883 Korea
| |
Collapse
|
9
|
Hou KQ, Zhou F, Chen XP, Ge Y, Chan ASC, Xiong XF. Asymmetric Synthesis of Oxindole-Derived Vicinal Tetrasubstituted Acyclic Amino Acid Derivatives by the Mannich-Type Reaction. J Org Chem 2020; 85:9661-9671. [PMID: 32603113 DOI: 10.1021/acs.joc.0c00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic asymmetric Mannich-type reaction of 3-hydroxy/3-aminooxindoles with 2-aminoacrylates to afford oxindole-derived acyclic amino acid derivatives bearing vicinal tetrasubstituted stereocenters is reported. (DHQ)2PHAL (4g) and quinine-derived squaramide (4d) were identified as efficient catalysts. Transformations of the Mannich-type reaction products highlight the utility of this synthetic strategy.
Collapse
Affiliation(s)
- Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Ge
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Song XJ, Ren HX, Xiang M, Li CY, Zou Y, Li X, Huang ZC, Tian F, Wang LX. Organocatalytic Enantioselective Michael Addition between 3-(3-hydroxy-1 H-pyrazol-1-yl)Oxindole and β -Nitrostyrene for the Preparation of Chiral Disubstituted Oxindoles. J Org Chem 2020; 85:9290-9300. [PMID: 32583669 DOI: 10.1021/acs.joc.9b03337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new enantioselective Michael addition between 3-(3-hydroxy-1H-pyrazol-1-yl)oxindole, a new synthon generated from isatin N,N'-cyclic azomethine imine 1,3-dipole, and β-nitrostyrene has been disclosed. A series of chiral 3-(3-oxo-2,3-dihydro-1H-pyrazol-1-yl) disubstituted oxindoles were obtained in excellent results (up to 97% yield, up to 94% ee) with moderate to good diastereoselectivities (up to 4.3:1 dr).
Collapse
Affiliation(s)
- Xiang-Jia Song
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Hong-Xia Ren
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Min Xiang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Chen-Yi Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Ying Zou
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Xia Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Zhi-Cheng Huang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| |
Collapse
|
11
|
Xia JT, Hu XP. Copper-Catalyzed Asymmetric Propargylic Alkylation with Oxindoles: Diastereo- and Enantioselective Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters. Org Lett 2020; 22:1102-1107. [DOI: 10.1021/acs.orglett.9b04621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jin-Tao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
12
|
Ren JW, Zhao QL, Xiao JA, Xia PJ, Xiang HY, Chen XQ, Yang H. A One-Pot Ring-Opening/Ring-Closure Sequence for the Synthesis of Polycyclic Spirooxindoles. Chemistry 2019; 25:4673-4677. [PMID: 30840339 DOI: 10.1002/chem.201900409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/15/2019] [Indexed: 12/16/2022]
Abstract
One-pot ring-opening/ring-closure process of combining methyleneindolinone with 3-aminooxindole has been developed in this work. Novel polycyclic spirooxindoles were efficiently assembled under mild conditions in high yields (up to 95 %) with moderate to good diastereoselectivities (up to >95:5 d.r.) through simple filtration.
Collapse
Affiliation(s)
- Ji-Wei Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, Guangxi, P.R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| |
Collapse
|
13
|
Li S, Tang Z, Wang Y, Wang D, Wang Z, Yu C, Li T, Wei D, Yao C. NHC-Catalyzed Aldol-Like Reactions of Allenoates with Isatins: Regiospecific Syntheses of γ-Functionalized Allenoates. Org Lett 2019; 21:1306-1310. [DOI: 10.1021/acs.orglett.8b04082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sha Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Ziwei Tang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P R China
| | - Dan Wang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Zhanlin Wang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|
14
|
Marcantoni E, Palmieri A, Petrini M. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00196d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Amido sulfones can be directly used as N-acylimine or N-acyliminium ion precursors in several synthetic processes aimed at the preparation of nitrogen containing compounds. This review collects the most relevant and practical utilizations of α-amido sulfones appeared in the literature after 2005.
Collapse
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| |
Collapse
|
15
|
Lu J, Fan Y, Sha F, Li Q, Wu XY. Copper-catalyzed enantioselective Mannich reaction between N-acylpyrazoles and isatin-derived ketimines. Org Chem Front 2019. [DOI: 10.1039/c9qo00575g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed enantioselective Mannich reaction between N-acylpyrazoles and isatin-derived ketimines is developed.
Collapse
Affiliation(s)
- Jian Lu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ying Fan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Qiong Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
16
|
Brandão P, Burke AJ. Recent advances in the asymmetric catalytic synthesis of chiral 3-hydroxy and 3-aminooxindoles and derivatives: Medicinally relevant compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Li D, Tan Y, Peng L, Li S, Zhang N, Liu Y, Yan H. Asymmetric Mannich Reaction and Construction of Axially Chiral Sulfone-Containing Styrenes in One Pot from α-Amido Sulfones Based on the Waste-Reuse Strategy. Org Lett 2018; 20:4959-4963. [PMID: 30085680 DOI: 10.1021/acs.orglett.8b02087] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A simultaneous asymmetric Mannich reaction and the construction of axially chiral sulfone-containing styrenes in one pot from α-amido sulfones based on the waste-reuse strategy was demonstrated. A series of chiral β-amino diesters and axially chiral sulfone-containing styrenes with various functional groups were synthesized in good to excellent yields and enantioselectivities under mild conditions. In addition, this protocol has been successfully applied to synthesize the anti-HIV drug Maraviroc and chiral trichloro derivatives.
Collapse
Affiliation(s)
- Dongmei Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Yu Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Shan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Nan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P. R. China
| |
Collapse
|
18
|
Mukhopadhyay S, Pan SC. An organocatalytic asymmetric Mannich reaction for the synthesis of 3,3-disubstituted-3,4-dihydro-2-quinolones. Org Biomol Chem 2018; 16:5407-5411. [PMID: 30024000 DOI: 10.1039/c8ob01399c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first organocatalytic asymmetric Mannich reaction employing 3,4-dihydro-2-quinolones has been developed for the synthesis of biologically important 3,3-disubstituted-dihydro-2-quinolones. N-Boc imine precursor amidosulfones as well as pre-formed N-Boc imine were used for this purpose. Cyclohexyldiamine derived bifunctional amino-thiourea catalysts were employed to provide the products in high enantio- and good diastereoselectivities.
Collapse
|
19
|
Shao H, Huang XW, Song L, Zhou WT, Tang GP, Ye L. Stereoselective synthesis of spiro[pyrrolidin-3,3′-oxindoles] via organocatalyzed asymmetric Mannich-type reaction. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Lin Y, Zhao BL, Du DM. Organocatalytic Asymmetric Synthesis of 3,3′-Pyrrolidinyl-bispirooxindoles via Michael/N-Hemiketalization Cascade Reaction between 3-Aminooxindoles and Isatin-Derived β,γ-Unsaturated α-Keto Esters. J Org Chem 2018; 83:7741-7750. [DOI: 10.1021/acs.joc.8b00632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ye Lin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| | - Bo-Liang Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| |
Collapse
|
21
|
Saranya S, Harry NA, Krishnan KK, Anilkumar G. Recent Developments and Perspectives in the Asymmetric Mannich Reaction. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700679] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences; Mahatma Gandhi University; Priyadarsini Hills P O Kottayam-686560 India
| | - Nissy Ann Harry
- School of Chemical Sciences; Mahatma Gandhi University; Priyadarsini Hills P O Kottayam-686560 India
| | - K. Keerthi Krishnan
- School of Chemical Sciences; Mahatma Gandhi University; Priyadarsini Hills P O Kottayam-686560 India
| | - Gopinathan Anilkumar
- School of Chemical Sciences; Mahatma Gandhi University; Priyadarsini Hills P O Kottayam-686560 India
| |
Collapse
|
22
|
Zhu WR, Chen Q, Lin N, Chen KB, Zhang ZW, Fang G, Weng J, Lu G. Organocatalytic Michael/cyclization cascade reactions of 3-isothiocyanato oxindoles with 3-trifluoroethylidene oxindoles: an approach for the synthesis of 3′-trifluoromethyl substituted 3,2′-pyrrolidinyl-bispirooxindoles. Org Chem Front 2018. [DOI: 10.1039/c8qo00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 3′-trifluoromethyl substituted 3,2′-pyrrolidinyl-bispirooxindoles were constructed via an asymmetric Michael/cyclization cascade reaction.
Collapse
Affiliation(s)
- Wen-Run Zhu
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
| | - Qing Chen
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
| | - Ning Lin
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
| | - Kai-Bin Chen
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
| | - Zhen-Wei Zhang
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
| | - Gang Fang
- College of Pharmacy
- Guangxi University of Chinese Medicine
- Nanning
- P.R. China
| | - Jiang Weng
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Gui Lu
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P.R. China
| |
Collapse
|
23
|
Hu S, Zhang J, Jin Q. DMAP-catalyzed alkylation of isatin N,N′-cyclic azomethine imine 1,3-dipoles with Morita–Baylis–Hillman carbonates. NEW J CHEM 2018. [DOI: 10.1039/c8nj00234g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-free C(sp3)–H alkylation of an isatin N,N′-cyclic azomethine imine 1,3-dipole.
Collapse
Affiliation(s)
- Shihe Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| |
Collapse
|
24
|
Balaraman K, Ding R, Wolf C. Stereoselective Synthesis of 3,3'-Bisindolines by Organocatalytic Michael Additions of Fluorooxindole Enolates to Isatylidene Malononitriles in Aqueous Solution. Adv Synth Catal 2017; 359:4165-4169. [PMID: 29755308 DOI: 10.1002/adsc.201701107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly diastereoselective organocatalytic reaction for the synthesis of fluorinated 3,3'-bisindolines exhibiting adjacent tetrasubstituted carbon stereocenters is described. A broad variety of heterochiral bisindolines was prepared in 91-99% yield using 3-fluorooxindoles and isatylidene malononitriles in the presence of catalytic amounts of triethylamine in water or aqueous solution. The reaction can be upscaled without compromising yield and diastereoselectivity and the general usefulness of this method was demonstrated with various Michael acceptors and extended to aldol and Mannich reactions.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC, USA
| | - Ransheng Ding
- Georgetown University, Chemistry Department, Washington, DC, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC, USA
| |
Collapse
|
25
|
Syntheses of CF2H-containing spirocyclopropyloxindoles from in situ generated CF2HCHN2 and 3-ylideneoxindoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Arai T, Tosaka T, Kuwano S. Catalytic Asymmetric Mannich Reaction of Isatin-derivedN-Boc Imines with Malononitrile by Bis(imidazolidine)-derived Pincer Rh Complex. ChemistrySelect 2017. [DOI: 10.1002/slct.201701444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC); Molecular Chirality Research Center (MCRC), and Department of Chemistry; Graduate School of Science; Chiba University, 1-33 Yayoi, Inage; Chiba 263-8522 Japan
| | - Takuya Tosaka
- Soft Molecular Activation Research Center (SMARC); Molecular Chirality Research Center (MCRC), and Department of Chemistry; Graduate School of Science; Chiba University, 1-33 Yayoi, Inage; Chiba 263-8522 Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC); Molecular Chirality Research Center (MCRC), and Department of Chemistry; Graduate School of Science; Chiba University, 1-33 Yayoi, Inage; Chiba 263-8522 Japan
| |
Collapse
|
27
|
Wang X, Wu L, Yang P, Song XJ, Ren HX, Peng L, Wang LX. Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipole and Base Catalyzed Michael Addition with β-Nitrostyrene via C3 Umpolung of Oxindole. Org Lett 2017; 19:3051-3054. [DOI: 10.1021/acs.orglett.7b01063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao Wang
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wu
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yang
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Jia Song
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xia Ren
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Peng
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Xin Wang
- Key
Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
28
|
Zhu YS, Wang WB, Yuan BB, Li YN, Wang QL, Bu ZW. A DBU-catalyzed Michael–Pinner–isomerization cascade reaction of 3-hydroxyoxindoles with isatylidene malononitriles: access to highly functionalized bispirooxindoles containing a fully substituted dihydrofuran motif. Org Biomol Chem 2017; 15:984-990. [DOI: 10.1039/c6ob02254e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first DBU-catalyzed Michael/Pinner/isomerization cascade reaction of 3-hydrooxindoles with isatylidene malononitriles was developed.
Collapse
Affiliation(s)
- Yan-Shuo Zhu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Wen-Bo Wang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Bei-Bei Yuan
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Ya-Ning Li
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Qi-Lin Wang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Zhan-Wei Bu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
29
|
Balaraman K, Wolf C. Katalytische enantioselektive und diastereoselektive allylische Alkylierung mit Fluorenolaten: Synthese von C3‐fluorierten und quartären Oxindolen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608752] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kaluvu Balaraman
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
30
|
Balaraman K, Wolf C. Catalytic Enantioselective and Diastereoselective Allylic Alkylation with Fluoroenolates: Efficient Access to C3-Fluorinated and All-Carbon Quaternary Oxindoles. Angew Chem Int Ed Engl 2016; 56:1390-1395. [PMID: 28026079 DOI: 10.1002/anie.201608752] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Indexed: 11/06/2022]
Abstract
Synthetically versatile 3,3-disubstituted fluorooxindoles exhibiting vicinal chirality centers were obtained in high yields and with excellent enantio-, diastereo-, and regioselectivity through catalytic asymmetric fluoroenolate alkylation with allylic acetates. The reaction proceeds under mild conditions and can be scaled up without compromising the asymmetric induction. The unique synthetic usefulness of the products is highlighted by the incorporation of additional functionalities and the formation of 3-fluorinated oxindoles exhibiting an array of four adjacent centers of chirality. A new C-F bond functionalization path that provides unprecedented possibilities for the stereoselective generation of a chiral quaternary carbon center in the alkaloid scaffold is introduced.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC, 20057, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC, 20057, USA
| |
Collapse
|
31
|
Marcantoni E, Petrini M. Recent Developments in the Stereoselective Synthesis of Nitrogen-Containing Heterocycles usingN-Acylimines as Reactive Substrates. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600644] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology; Chemistry Division; Università di Camerino; via S. Agostino 1 62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology; Chemistry Division; Università di Camerino; via S. Agostino 1 62032 Camerino Italy
| |
Collapse
|