1
|
Sahoo J, Panda J, Sahoo G. Unravelling the Development of Non-Covalent Organocatalysis in India. Synlett 2022. [DOI: 10.1055/s-0042-1751370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThis review is devoted to underpinning the contributions of Indian researchers towards asymmetric organocatalysis. More specifically, a comprehensive compilation of reactions mediated by a wide range of non-covalent catalysis is illustrated. A detailed overview of vividly catalogued asymmetric organic transformations promoted by hydrogen bonding and Brønsted acid catalysis, alongside an assortment of catalysts is provided. Although asymmetric organocatalysis has etched itself in history, we aim to showcase the scientific metamorphosis of Indian research from baby steps to large strides within this field. 1 Introduction2 Non-Covalent Catalysis and Its Various Activation Modes3 Hydrogen-Bonding Catalysis3.1 Urea- and Thiourea-Derived Organocatalysts3.1.1 Thiourea-Derived Organocatalysts3.1.2 Urea-Derived Organocatalysts3.2 Squaramide-Derived Organocatalysts3.2.1 Michael Reactions3.2.2 C-Alkylation Reactions3.2.3 Mannich Reactions3.2.4 [3+2] Cycloaddition Reactions3.3 Cinchona-Alkaloid-Derived Organocatalysts3.3.1 Michael Reactions3.3.2 Aldol Reactions3.3.3 Friedel–Crafts Reactions3.3.4 Vinylogous Alkylation of 4-Methylcoumarins3.3.5 C-Sulfenylation Reactions3.3.6 Peroxyhemiacetalisation of Isochromans3.3.7 Diels–Alder Reactions3.3.8 Cycloaddition Reactions3.3.9 Morita–Baylis–Hilman Reactions4 Brønsted Acid Derived Organocatalysts4.1 Chiral Phosphoric Acid Catalysis4.1.1 Diels–Alder Reactions4.1.2 Addition of Ketimines4.1.3 Annulation of Acyclic Enecarbamates5 Conclusion
Collapse
|
2
|
Tamanna, Hussain Y, Sharma D, Chauhan P. Asymmetric Synthesis of Cyclohexenone-Fused Isochromans via Quinidine-Catalyzed Domino Peroxyhemiacetalization/Oxa-Michael Addition/Desymmetrization Sequence. J Org Chem 2022; 87:6397-6402. [PMID: 35438500 DOI: 10.1021/acs.joc.2c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A highly enantio- and diastereoselective synthesis of highly functionalized isochromans was achieved through an organocatalyzed domino reaction. Quinidine as the catalyst initiates a peroxyhemiacetalization/oxa-Michael/desymmetrization domino sequence between various 2,5-cyclohexadienone-tethered aryl aldehydes with hydroperoxides to generate the single diastereomers of isochromans appended with a cyclohexenone ring bearing three vicinal stereocenters in good yields and high enantioselectivities under ambient reaction conditions.
Collapse
Affiliation(s)
- Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| |
Collapse
|
3
|
Shikari A, Mandal K, Chopra D, Pan SC. Organocatalytic Asymmetric Synthesis of Cyclic Acetals with Spirooxindole Skeleton. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amit Shikari
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Koushik Mandal
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Deepak Chopra
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Subhas Chandra Pan
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
4
|
Gudise VB, Settipalli PC, Reddy YP, Anwar S. Organocascade Synthesis of Spiro[chroman‐3,2′‐indanedione] Scaffolds via [4+2] or [1+1+4] Cyclisation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Veera Babu Gudise
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research Vadlamudi, Guntur 522 213 Andhra Pradesh India
| | - Poorna Chandrasekhar Settipalli
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research Vadlamudi, Guntur 522 213 Andhra Pradesh India
| | - Yeruva Pavankumar Reddy
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research Vadlamudi, Guntur 522 213 Andhra Pradesh India
| | - Shaik Anwar
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research Vadlamudi, Guntur 522 213 Andhra Pradesh India
| |
Collapse
|
5
|
Kuan TH, Kotipalli T, Chen CC, Hou DR. Addition of benzyl ethers to alkynes: a metal-free synthesis of 1 H-isochromenes. Org Biomol Chem 2021; 19:10390-10402. [PMID: 34825694 DOI: 10.1039/d1ob01941d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bromotrimethylsilane (TMSBr)-promoted intramolecular cyclization of (o-arylethynyl)benzyl ethers to form 1H-isochromenes at room temperature is reported. Further studies indicated that vinyl carbocations are the reaction intermediates which are stabilized by the conjugated aryl groups. Thus, O-addition of benzyl ethers/tetrahydropyrans to alkynes was achieved under metal-free, acidic conditions. These reaction conditions were compatible with an alkynyl Prins reaction; therefore, 1H-isochromenes were produced directly from alkynyl benzaldehydes and alkynyl alcohols using a one-pot procedure.
Collapse
Affiliation(s)
- Tzu-Hsuan Kuan
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Trimurtulu Kotipalli
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Cheng-Chun Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| |
Collapse
|
6
|
Murata R, Asano K, Matsubara S. Catalytic asymmetric cycloetherification via intramolecular oxy-Michael addition of enols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
8
|
Lv XJ, Ming YC, Wu HC, Liu YK. Brønsted acid-catalyzed dynamic kinetic resolution of in situ formed acyclic N,O-hemiaminals: cascade synthesis of chiral cyclic N,O-aminals. Org Chem Front 2021. [DOI: 10.1039/d1qo01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A H2O controlled dynamic kinetic resolution was involved in a Brønsted acid-catalyzed acyclic N,O-hemiaminal formation/oxa-Michael reaction cascade, leading to highly enantioenriched cis-2,6-disubstituted tetrahydropyrans bearing an exo amide group.
Collapse
Affiliation(s)
- Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hui-Chun Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
9
|
Murata R, Matsumoto A, Asano K, Matsubara S. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification. Chem Commun (Camb) 2020; 56:12335-12338. [PMID: 32896841 DOI: 10.1039/d0cc05509c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first desymmetrization of gem-diols forming chiral hemiketal carbons was accomplished via organocatalytic enantio- and diastereoselective cycloetherification, which afforded optically active tetrahydropyrans containing a chiral hemiketal carbon and tetrasubstituted stereocenters bearing synthetically versatile fluorinated groups. The desymmetrization of silanediols was also demonstrated as an asymmetric route to chiral silicon centers.
Collapse
Affiliation(s)
- Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
10
|
Tamanna, Kumar M, Joshi K, Chauhan P. Catalytic Asymmetric Synthesis of Isochroman Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamanna
- Department of Chemistry.Indian Institute of Technology Jammu Jagti NH 44, Nagrota Bypass Jammu (J & K) 181221 India
| | - Mukesh Kumar
- Department of ChemistrySahu Jain College Najibabad, Bijnor 246763 India
| | - Kavita Joshi
- Department of Chemistry.Indian Institute of Technology Jammu Jagti NH 44, Nagrota Bypass Jammu (J & K) 181221 India
| | - Pankaj Chauhan
- Department of Chemistry.Indian Institute of Technology Jammu Jagti NH 44, Nagrota Bypass Jammu (J & K) 181221 India
| |
Collapse
|
11
|
Nardangeli N, Topolovčan N, Simionescu R, Hudlický T. Polarization Effect on Regioselectivity of Pd-Catalyzed Cyclization of 2-Alkynylbenzaldehydes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nolan Nardangeli
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| | - Nikola Topolovčan
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| | - Razvan Simionescu
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| | - Tomáš Hudlický
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| |
Collapse
|
12
|
Liu MG, Liu N, Xu WH, Wang L. Tandem reaction strategy of the Passerini/Wittig reaction based on the in situ capture of isocyanides: One-pot synthesis of heterocycles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Roy TK, Parhi B, Ghorai P. Cinchonamine Squaramide Catalyzed Asymmetric aza-Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angew Chem Int Ed Engl 2018; 57:9397-9401. [DOI: 10.1002/anie.201805020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| | - Biswajit Parhi
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| |
Collapse
|
14
|
Roy TK, Parhi B, Ghorai P. Cinchonamine Squaramide Catalyzed Asymmetric aza-Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| | - Biswajit Parhi
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road Bhauri Bhopal- 462066 India
| |
Collapse
|
15
|
Liu C, Han P, Xie Z, Xu Z, Wei D. Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity. RSC Adv 2018; 8:40338-40346. [PMID: 35558202 PMCID: PMC9091461 DOI: 10.1039/c8ra09065c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
The competing mechanisms of Ag(i)-catalyzed chemoselective addition reactions of amino alcohols and electron-deficient olefins leading to the O-adduct or N-adduct products were systematically studied with density functional theory methods. Calculations indicate that the AgHMDS/dppe versus AgOAc/dppe catalytic systems can play different roles and thereby generate two different products. The AgHMDS/dppe system works as a Brønsted base to deprotonate the amino alcohol OH to form the Ag–O bond, which leads to formation of the O-adduct. In contrast, the AgOAc/dppe system mainly acts as a Lewis acid to coordinate with O and N atoms of the amino alcohol, but it cannot act as the Brønsted base to further activate the OH group because of its weaker basicity. Therefore, the AgOAc/dppe catalyzed reaction has a mechanism that is similar to the non-catalyzed reaction, and generates the same N-adduct. The obtained insights will be important for rational design of the various kinds of cooperatively catalyzed chemoselective addition reactions, including the use of the less nucleophilic hydroxyl groups of unprotected amino alcohols. The origin of the chemoselectivities of Ag(i)-catalyzed addition reactions of amino alcohols to olefin has been predicted for the first time.![]()
Collapse
Affiliation(s)
- Chunhui Liu
- School of Chemistry and Chemical Engineering
- Xuchang University of China
- Xuchang
- P. R. China
| | - Peilin Han
- School of Chemistry and Chemical Engineering
- Xuchang University of China
- Xuchang
- P. R. China
| | - Zhizhong Xie
- Department of Chemistry
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Zhihong Xu
- School of Chemistry and Chemical Engineering
- Xuchang University of China
- Xuchang
- P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University of China
- Zhengzhou
- P. R. China
| |
Collapse
|
16
|
Midya A, Maity S, Ghorai P. Dynamic Kinetic Spiroketalization/Oxa-Michael Addition Cascade of Alkoxyboronates and Peroxyacetals: Enantio- and Diastereoselective Synthesis of Benzannulated Spiroketals. Chemistry 2017. [DOI: 10.1002/chem.201701291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Abhisek Midya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal 462066 India
| | - Sanjay Maity
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal 462066 India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal 462066 India
| |
Collapse
|
17
|
Liao Y, Zhou B, Xia Y, Liu X, Lin L, Feng X. Asymmetric [3 + 2] Cycloaddition of 2,2′-Diester Aziridines To Synthesize Pyrrolidine Derivatives. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00787] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuting Liao
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Baixin Zhou
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yong Xia
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Orue A, Uria U, Roca-López D, Delso I, Reyes E, Carrillo L, Merino P, Vicario JL. Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights. Chem Sci 2017; 8:2904-2913. [PMID: 28451356 PMCID: PMC5376714 DOI: 10.1039/c7sc00009j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/28/2017] [Indexed: 11/21/2022] Open
Abstract
2-Hydroxydihydropyran-5-ones behave as excellent polyfunctional reagents able to react with enals through oxa-Michael/Michael process cascade under the combination of iminium and enamine catalysis. These racemic hemiacetalic compounds are used as unconventional O-pronucleophiles in the initial oxa-Michael reaction, also leading to the formation of a single stereoisomer under a dynamic kinetic resolution (DKR) process. Importantly, by using β-aryl or β-alkyl substituted α,β-unsaturated substrates as initial Michael acceptors either kinetically or thermodynamically controlled diastereoisomers were formed with high stereoselection through the careful selection of the reaction conditions. Finally, a complete experimental and computational study confirmed the initially proposed DKR process during the catalytic oxa-Michael/Michael cascade reaction and also explained the kinetic/thermodynamic pathway operating in each case.
Collapse
Affiliation(s)
- Ane Orue
- Department of Organic Chemistry II , University of the Basque Country (UPV/EHU) , P.O. Box 644 , 48080 Bilbao , Spain
| | - Uxue Uria
- Department of Organic Chemistry II , University of the Basque Country (UPV/EHU) , P.O. Box 644 , 48080 Bilbao , Spain
| | - David Roca-López
- Departamento de Síntesis y Estructura de Biomoléculas , Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) , Universidad de Zaragoza , CSIC , Spain
| | - Ignacio Delso
- Servicio de Resonancia Magnética Nuclear , Centro de Química y Materiales de Aragón (CEQMA) , Universidad de Zaragoza , CSIC , Spain
| | - Efraím Reyes
- Department of Organic Chemistry II , University of the Basque Country (UPV/EHU) , P.O. Box 644 , 48080 Bilbao , Spain
| | - Luisa Carrillo
- Department of Organic Chemistry II , University of the Basque Country (UPV/EHU) , P.O. Box 644 , 48080 Bilbao , Spain
| | - Pedro Merino
- Departamento de Síntesis y Estructura de Biomoléculas , Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) , Universidad de Zaragoza , CSIC , Spain
| | - Jose L Vicario
- Department of Organic Chemistry II , University of the Basque Country (UPV/EHU) , P.O. Box 644 , 48080 Bilbao , Spain
| |
Collapse
|
19
|
Hu J, Bian M, Ding H. Recent application of oxa-Michael reaction in complex natural product synthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Reddy RR, Gudup SS, Ghorai P. Organocatalytic, Enantioselective Synthesis of Cyclohexadienone Containing Hindered Spirocyclic Ethers through an Oxidative Dearomatization/Oxa-Michael Addition Sequence. Angew Chem Int Ed Engl 2016; 55:15115-15119. [DOI: 10.1002/anie.201607039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Reddy Rajasekhar Reddy
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Satish Sonbarao Gudup
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| |
Collapse
|
21
|
Reddy RR, Gudup SS, Ghorai P. Organocatalytic, Enantioselective Synthesis of Cyclohexadienone Containing Hindered Spirocyclic Ethers through an Oxidative Dearomatization/Oxa-Michael Addition Sequence. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Reddy Rajasekhar Reddy
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Satish Sonbarao Gudup
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| |
Collapse
|
22
|
Parhi B, Maity S, Ghorai P. Catalytic Asymmetric Conjugate Addition of Carboxylic Acids via Oxa-Michael Reaction of Peroxy Hemiacetals followed by Kornblum DeLaMare Fragmentation. Org Lett 2016; 18:5220-5223. [DOI: 10.1021/acs.orglett.6b02463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Parhi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass
Road, Bhauri, Bhopal 462066, India
| | - Sanjay Maity
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass
Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass
Road, Bhauri, Bhopal 462066, India
| |
Collapse
|