1
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
2
|
Vishwakarma M, Haider T, Soni V. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiol Res 2024; 278:127517. [PMID: 37863019 DOI: 10.1016/j.micres.2023.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India; Amity Institute of Pharmacy, Amity University, Gwalior, M.P., India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India.
| |
Collapse
|
3
|
Yagi A, Kashima M, Ishijima H, Tomoda H, Uchida R. New potentiators of amphotericin B activity, shodoamides A to C produced by Pseudophialophora sp. BF-0158. J Antibiot (Tokyo) 2023; 76:579-584. [PMID: 37479741 DOI: 10.1038/s41429-023-00642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
During our screening program for new potentiators of amphotericin B activity against Candida albicans, shodoamides A to C (1-3) were isolated from a culture broth of the fungus Pseudophialophora sp. BF-0158 fermented under shaking conditions. A known congener named shodoamide D (4) in this paper was obtained from a culture broth of the BF-0158 strain fermented under static conditions. The structures of 1-4 were assigned based on spectroscopic analyses, including NMR and MS, and were found to have a common N-(2´,3´,4´-trihydroxybutyl)-6-methyl-2,4-tetradecadienamide structure. Compounds 1-3 exhibited no antifungal activity, but they induced up to 32-fold increases in amphotericin B activity against C. albicans by a microdilution method.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Masahiro Kashima
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroyuki Ishijima
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Drug Discovery Laboratory, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
4
|
Yagi A, Yamaguchi Y, Kawasaki K, Usui E, Yamazaki H, Uchida R. New piericidin rhamnosides as potentiators of amphotericin B activity against Candida albicans produced by actinomycete strain TMPU-A0287. J Antibiot (Tokyo) 2023; 76:65-74. [PMID: 36460732 DOI: 10.1038/s41429-022-00581-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
Four new piericidin rhamnosides (2, 4-6) together with three known piericidins (1, 3, 7) were isolated from the culture broth of the unidentified actinomycete strain TMPU-A0287 as potentiators of antifungal amphotericin B (AmB) activity. The structures of piericidins were elucidated by spectroscopic analyses, including NMR and MS. Compounds 2 and 4-6 possessed a ketone at C-10 and one or two methoxy groups on the rhamnose in their structures. Compounds 1-7 did not exhibit antifungal activity against Candida albicans and all potentiated AmB activity. The MIC values of AmB against C. albicans combined with 1-7 (4.0 μg ml-1) decreased from 0.50 to 0.063 or 0.031 μg ml-1, yielding an 8- or 16-fold increase in AmB activity.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuga Yamaguchi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Keiko Kawasaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Eri Usui
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hiroyuki Yamazaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Bissell AU, Rautschek J, Hoefgen S, Raguž L, Mattern DJ, Saeed N, Janevska S, Jojić K, Huang Y, Kufs JE, Herboeck B, Guo H, Hillmann F, Beemelmanns C, Valiante V. Biosynthesis of the Sphingolipid Inhibitors Sphingofungins in Filamentous Fungi Requires Aminomalonate as a Metabolic Precursor. ACS Chem Biol 2022; 17:386-394. [PMID: 35023724 DOI: 10.1021/acschembio.1c00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.
Collapse
Affiliation(s)
- Alexander U. Bissell
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Julia Rautschek
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Luka Raguž
- Chemical Biology of Microbe−Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Nauman Saeed
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Slavica Janevska
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Katarina Jojić
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Johann E. Kufs
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Bio Pilot Plant, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Barbara Herboeck
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe−Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe−Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
6
|
Agrawal S, Saha S. The genus Simplicillium and Emericellopsis: A review of phytochemistry and pharmacology. Biotechnol Appl Biochem 2021; 69:2229-2239. [PMID: 34779050 DOI: 10.1002/bab.2281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 11/07/2022]
Abstract
The demand for novel and improved medicine from biological sources to cater to the biopharmaceutical sector has increased significantly in recent years. Among the vast and miscellaneous microbial diversity, fungi provide a prolific source of structurally unique and biologically active secondary metabolites. Natural products obtained from fungi have reformed the era of biomedicine, providing effective drugs that have diverse healing potential. In this review, we focus on the isolation, chemical structure, and bioactivity of biomolecules that have been identified and studied for the first time. Further, we also explain in substantial detail that how the vast uninvestigated Emericellopsis and Simplicillium species may serve as a potential treasure trove of chemically diverse compounds.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Department of Phytochemistry, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Suman Saha
- Department of Chemical Engineering, Parul Institute of Technology, Parul University, Vadodara, Gujarat
| |
Collapse
|
7
|
Podogigants A and B, two new potentiators of amphotericin B activity, from Sordariomycete Podostroma giganteum. J Nat Med 2021; 75:877-883. [PMID: 33993393 DOI: 10.1007/s11418-021-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Two new compounds, podogigants A (1) and B (2), were isolated from the culture broth of Podostroma giganteum. This is the first report on the identification of secondary metabolites in P. giganteum. The structures of 1 and 2 were elucidated through spectroscopic analysis, including 2D NMR spectroscopy assisted by chemical derivatization, which revealed the presence of farnesyl- and geranyl-hydroquinone structures, respectively. Compounds 1 and 2 exhibited no antifungal activity even at a concentration of 64 μg/mL, whereas they potentiated amphotericin B (AmB) activity against several species of fungi. In particular, 1 potentiated AmB activity against C. albicans and R. oryzae by up to 32-fold (MIC value of AmB decreased from 1.0 to 0.032 µg/mL), while 2 potentiated AmB activity against C. albicans by up to 16-fold.
Collapse
|
8
|
McEvoy K, Normile TG, Poeta MD. Antifungal Drug Development: Targeting the Fungal Sphingolipid Pathway. J Fungi (Basel) 2020; 6:jof6030142. [PMID: 32825250 PMCID: PMC7559796 DOI: 10.3390/jof6030142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are becoming more prevalent and problematic due to the continual rise of immune deficient patients as well as the progressive development of drug resistance towards currently available antifungal drugs. There has been a significant increase in the development of antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has been very little progress in developing compounds inhibiting totally new fungal targets or/and fungal pathways. This review focuses on novel compounds recently discovered to target the fungal sphingolipids and their metabolizing enzymes.
Collapse
Affiliation(s)
- Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
- Correspondence: ; Tel.: +1-631-632-4024
| |
Collapse
|
9
|
Simplicillium spumae (Cordycipitaceae, Hypocreales), a new hyphomycetes from aquarium foam in Japan. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Polyketide glycosides phialotides A to H, new potentiators of amphotericin B activity, produced by Pseudophialophora sp. BF-0158. J Antibiot (Tokyo) 2020; 73:211-223. [DOI: 10.1038/s41429-019-0276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
|
11
|
Fukuda T, Nagai K, Yagi A, Kobayashi K, Uchida R, Yasuhara T, Tomoda H. Nectriatide, a Potentiator of Amphotericin B Activity from Nectriaceae sp. BF-0114. JOURNAL OF NATURAL PRODUCTS 2019; 82:2673-2681. [PMID: 31498627 DOI: 10.1021/acs.jnatprod.8b01056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new compound, designated nectriatide (1), was isolated as a potentiator of amphotericin B (AmB) activity against Candida albicans from the culture broth of Nectriaceae sp. BF-0114. This structure was elucidated based on spectroscopic analyses (1D and 2D NMR data), chemical methods, and total synthesis. Compound 1 was a unique cyclotetrapeptide consisting of l-N-methyltyrosine, anthranilic acid, l-alanine, and l-valine. Compound 1 and several synthetic derivatives, including linear peptides, potentiated AmB activity against C. albicans by up to 16-fold (the MIC value of AmB decreased from 0.5 μg/mL to 0.031 μg/mL in combination with test compound).
Collapse
Affiliation(s)
- Takashi Fukuda
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Department of Fisheries, Faculty of Agriculture and Agricultural Technology and Innovation Research Institute , Kindai University , 3327-204 Nakamachi , Nara 631-8505 , Japan
| | - Kenichiro Nagai
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Akiho Yagi
- Department of Natural Product Chemistry , Tohoku Medical and Pharmaceutical University , 4-4-1 Komatsushima , Aoba-ku, Sendai, Miyagi 981-8558 , Japan
| | - Keisuke Kobayashi
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Ryuji Uchida
- Department of Natural Product Chemistry , Tohoku Medical and Pharmaceutical University , 4-4-1 Komatsushima , Aoba-ku, Sendai, Miyagi 981-8558 , Japan
| | - Tadashi Yasuhara
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Hiroshi Tomoda
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| |
Collapse
|
12
|
Rukachaisirikul V, Chinpha S, Saetang P, Phongpaichit S, Jungsuttiwong S, Hadsadee S, Sakayaroj J, Preedanon S, Temkitthawon P, Ingkaninan K. Depsidones and a dihydroxanthenone from the endophytic fungi Simplicillium lanosoniveum (J.F.H. Beyma) Zare & W. Gams PSU-H168 and PSU-H261. Fitoterapia 2019; 138:104286. [PMID: 31394164 DOI: 10.1016/j.fitote.2019.104286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Three new compounds including two depsidones (simplicildones J and K) and one dihydroxanthenone (globosuxanthone E) together with nine known compounds were obtained from the crude extracts of two endophytic fungi Simplicillium lanosoniveum (J.F.H. Beyma) Zare & W. Gams PSU-H168 and PSU-H261 which were isolated from the leaves of Hevea brasiliensis. The structures were elucidated by spectroscopic evidence. The absolute configuration of globosuxanthone E was established by means of experimental and calculated TDDFT ECD data. Simplicildone K exhibited antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with equal MIC values of 128 μg/mL. Simplicildone K and globosuxanthone E displayed antifungal activity against Cryptococcus neoformans ATCC90113 with the same MIC values of 32 μg/mL. In addition, known botryohordine C and simplicildone A showed phosphodiesterase 5 inhibitory activity with the IC50 values of 5.69 and 9.96 μM, respectively, and were noncytotoxic toward noncancerous Vero cells.
Collapse
Affiliation(s)
- Vatcharin Rukachaisirikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Supaporn Chinpha
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Praphatsorn Saetang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Souwalak Phongpaichit
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarinya Hadsadee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Thasala, Nakhonsithammarat 80161, Thailand
| | - Sita Preedanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
| | - Prapapan Temkitthawon
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
13
|
Uchida R, Kondo A, Yagi A, Nonaka K, Masuma R, Kobayashi K, Tomoda H. Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981. J Antibiot (Tokyo) 2018; 72:134-140. [PMID: 30532035 DOI: 10.1038/s41429-018-0128-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Simpotentin, a new potentiator of amphotericin B activity against Candida albicans and Cryptococcus neoformans, was isolated from the culture broth of Simplicillium minatense FKI-4981 by Diaion HP-20 column chromatography, centrifugal partition chromatography, and preparative HPLC. The structure of simpotentin was elucidated by spectroscopic analyses including NMR and MS. The compound has a mannose core to which two medium-chain fatty acids are linked. Simpotentin was found to potentiate amphotericin B activity against C. albicans by the microdilution method.
Collapse
Affiliation(s)
- Ryuji Uchida
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ariko Kondo
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akiho Yagi
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rokurou Masuma
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Keisuke Kobayashi
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Tomoda
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
14
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|