1
|
Li K, Zhao Z, Qin W, Liu Y, Yan H. Catalytic asymmetric construction of bridged bicyclo[ m.3.1] rings using an intramolecular Diels-Alder reaction. Chem Commun (Camb) 2024; 60:9570-9573. [PMID: 39139075 DOI: 10.1039/d4cc02850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we presented an enantioselective intramolecular Diels-Alder (IMDA) reaction with vinyl branched vinylidene ortho-quinone methide (VQM). The control of site selectivity in the IMDA reaction led to both chiral bridged bicyclo[4.3.1] and [5.3.1] architectures with high isolated yields (up to 85%) and excellent enantioselectivities (up to 97% ee).
Collapse
Affiliation(s)
- Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hailong Yan
- Chongqing University FuLing Hospital, Chongqing University, Chongqing 408000, P. R. China.
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
2
|
Gao ZX, Wang H, Su AH, Li QY, Liang Z, Zhang YQ, Liu XY, Zhu MZ, Zhang HX, Hou YT, Li X, Sun LR, Li J, Xu ZJ, Lou HX. Asymmetric Synthesis and Biological Evaluation of Platensilin, Platensimycin, Platencin, and Their Analogs via a Bioinspired Skeletal Reconstruction Approach. J Am Chem Soc 2024; 146:18967-18978. [PMID: 38973592 DOI: 10.1021/jacs.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Platensilin, platensimycin, and platencin are potent inhibitors of β-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 μg/mL) against S. aureus compared to platensimycin.
Collapse
Affiliation(s)
- Zong-Xu Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hongliang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Qian-Ying Li
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Zhen Liang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Qing Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hai-Xia Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Tong Hou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Long-Ru Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Rd, Shanghai 200213, P. R. China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| |
Collapse
|
3
|
Li Z, Zheng J, Li WDZ. Diverse strategic approaches en route to Taxol total synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Relay ring-closing metathesis strategies towards the synthesis of the ABC tricycle of Taxol. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Brooks S, Charlton G, Letort A, Prunet J, Bucher G. Calculations on the Ruthenium-Catalyzed Diene and Dienyne Ring-Closing Metathesis Reactions in the Synthesis of Taxol Derivatives. J Org Chem 2021; 86:13056-13070. [PMID: 34449228 DOI: 10.1021/acs.joc.1c01879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density-functional and semiempirical calculations (M06, M06L, and PM6) on intermediates in the ring-closing metathesis (RCM) reactions in the synthesis of Taxol derivatives give results in excellent agreement with the results of previous experimental work. The results suggest that the degree of steric overloading plays a decisive role in determining the outcome (ene-ene or ene-yne-ene metathesis). Due to the rigidity of the Taxol skeleton being formed in the ene-yne-ene cascade reaction, the transition states in its final ene-ene metathesis reaction stage are particularly sensitive to steric effects. Thus, the reaction is predicted to be preferred for one diastereomer of the precursor in which the diol functionality is protected with a compact cyclic carbonate moiety, whereas the use of a bulkier benzoate-protecting group results in activation barriers for Taxol formation that are prohibitive. The reason why one diastereomer of the carbonate-protected precursor undergoes formation of a tricycle via an ene-yne-ene RCM cascade, whereas the other diastereomer undergoes cyclooctene formation via an ene-ene RCM, likely lies in the orientation of the pseudoaxial methyl group on the cyclohexene ring, which in the latter case would unfavorably point toward the reactive center of the Ru-complex, leading to Taxol formation.
Collapse
Affiliation(s)
- Samantha Brooks
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Georgina Charlton
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Aurélien Letort
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Götz Bucher
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
6
|
Serra M, Bernardi E, Colombo L. Recent Advances in One-Pot Enyne Metathesis Processes for the Preparation of Biologically and Medicinally Relevant Compounds. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractEnyne metathesis reactions are powerful tools for the preparation of a wide range of synthetic and natural chemical substances with increasing efficiency and environmental sustainability. The driving force of the reaction is the formation of a stable conjugated system, i.e., a diene, which through further functionalization steps can be used for the construction of skeletally complex molecular architectures. These concepts are exploited to design cascade reaction sequences, where multiple rings can be formed in a one-pot fashion by combining metathetic protocols with various chemical transformations. The strong correlation between synthetic organic chemistry and medicinal chemistry prompted us to review the most notable approaches for the synthesis of biologically relevant compounds via enyne metathesis-based one-pot processes. With the aim to provide a modern and practical overview, by taking into consideration the scientific literature on this topic, we have focused the majority of our attention on the research performed in the last decade. This review covers the literature from 2003 to 2020.1 Introduction2 Ethylene-Mediated Processes3 RCEYM/CM and CEYM/RCM Processes4 Enyne Metathesis/Diels–Alder-Based Processes5 RCM of Dienynes6 RCM of Tethered Dienynes7 Relay Metathesis8 Ring-Rearrangement Metathesis9 RCEYM/Transition-Metal-Catalyzed C–C Bond-Forming Processes10 Conclusions11 List of Acronyms
Collapse
|
7
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Affiliation(s)
- Mukund Ghavre
- IntelliSyn Pharma 7171 Rue Frederick Banting Montréal, Saint-Laurent QC H4S 1Z9 Canada
| |
Collapse
|
9
|
Llobat A, Escorihuela J, Sedgwick DM, Rodenes M, Román R, Soloshonok VA, Han J, Medio‐Simón M, Fustero S. The Ruthenium‐Catalyzed Domino Cross Enyne Metathesis/Ring‐Closing Metathesis in the Synthesis of Enantioenriched Nitrogen‐Containing Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Miriam Rodenes
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Raquel Román
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country 20018 San Sebastian Spain
- Basque Foundation for Science IKERBASQUE 48011 Bilbao Spain
| | - Jianlin Han
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 210037 Jiangsu People's Republic of China
| | - Mercedes Medio‐Simón
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Santos Fustero
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| |
Collapse
|
10
|
Hagiwara H. Aspects in the Total Syntheses of Higher Terpenoids Starting From Wieland–Miescher Ketone and Its Derivative: A Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20925340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Synthetic studies of higher terpenoids starting from Wieland–Miescher ketone since 2012 have been compiled.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, Nishi-Ku, Niigata, Japan
| |
Collapse
|
11
|
Inomata K, Narita S. Novel stereoselective 1,2-rearrangement of Swaminathan ketone derivatives bearing a 7-membered ring under solvolysis conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Inomata K, Akahane Y, Miura A. Alternative Chiral Preparations of a Swaminathan Ketone via Asymmetric Aldol Reactions Mediated by Chiral Amines Bearing a Pyrrolidine. HETEROCYCLES 2020. [DOI: 10.3987/com-19-14124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
|
14
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Bahou KA, Braddock DC, Meyer AG, Savage GP. Kinetic Benchmarking Reveals the Competence of Prenyl Groups in Ring-Closing Metathesis. Org Lett 2017; 19:5332-5335. [PMID: 28933551 DOI: 10.1021/acs.orglett.7b02492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of prenyl-containing malonates are kinetically benchmarked against the standard allyl-containing congeners using a ruthenium benzylidene precatalyst for ring-closing metatheses. The prenyl grouping is found to be a superior acceptor olefin compared to an allyl group in RCM processes with ruthenium alkylidenes derived from terminal alkenes. The prenyl group is also found to be a highly competent acceptor for a ruthenium alkylidene derived from a 1,1-disubstituted olefin in a RCM process.
Collapse
Affiliation(s)
- Karim A Bahou
- Department of Chemistry, Imperial College London , South Kensington, London SW7 2AZ, U.K
| | - D Christopher Braddock
- Department of Chemistry, Imperial College London , South Kensington, London SW7 2AZ, U.K
| | - Adam G Meyer
- CSIRO Manufacturing, Private Bag 10, Clayton South VIC 3169, Australia
| | - G Paul Savage
- CSIRO Manufacturing, Private Bag 10, Clayton South VIC 3169, Australia
| |
Collapse
|
16
|
Kandimalla SR, Sabitha G. Diversity-Oriented Synthesis of Oxacyclic Spirooxindole Derivatives through Ring-Closing Enyne Metathesis and Intramolecular Pauson-Khand (2+2+1) Cyclization of Oxindole Enynes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satheeshkumar Reddy Kandimalla
- Natural Products Chemistry Division; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 025 India
| | - Gowravaram Sabitha
- Natural Products Chemistry Division; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 025 India
| |
Collapse
|
17
|
Affiliation(s)
| | | | | | | | - Masahisa Nakada
- Graduate School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
18
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. The literature from January to December, 2016 is reviewed.
Collapse
|