1
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
2
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
3
|
Albaneze-Walker J, Urbanietz G, Horvath A, Lancianesi S, Gimenez Molina A, De Vijlder T, Baeten M, Canters M. Synthesis of Phosphorodiamidate Oligonucleotide Dimers. J Org Chem 2022; 87:13363-13366. [PMID: 36161801 DOI: 10.1021/acs.joc.2c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azido nucleosides couple with phosphoramidites via an initial iminophosphorane, which eliminates acrylonitrile to generate the coupled dimer P(V) product. The vulnerable phosphite triester intermediate is bypassed entirely, making the methodology very suitable to solution-phase synthesis. This new coupling protocol requires no protection of the 5'-OH function and provides a new method of installing internucleosidic phosphorodiamidate bonds with near quantitative yields.
Collapse
Affiliation(s)
- Jennifer Albaneze-Walker
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gregor Urbanietz
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Andras Horvath
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Stefano Lancianesi
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Alejandro Gimenez Molina
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Thomas De Vijlder
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Mattijs Baeten
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Martine Canters
- Chemical Process Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
4
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
5
|
Zhang X, Cui X, Wang W, Zeng T, Wang Y, Tan Y, Liu D, Wang X, Li Y. Base‐Promoted Regiospecific Synthesis of Fully Substituted 1,2,3‐Triazoles and 1,5‐Disubstituted 1,2,3‐Triazoles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xueying Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Xue Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Wei Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Tingting Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Dongyan Liu
- Department Dongzhimen Hospital Beijing University of Chinese Medicine Beijing 100700 P. R. China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| |
Collapse
|
6
|
Xu X, Zhong Y, Xing Q, Gao Z, Gou J, Yu B. Ytterbium-Catalyzed Intramolecular [3 + 2] Cycloaddition based on Furan Dearomatization to Construct Fused Triazoles. Org Lett 2020; 22:5176-5181. [DOI: 10.1021/acs.orglett.0c01780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoming Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ying Zhong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Qingzhao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi’an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
7
|
|
8
|
Osawa T, Sawamura M, Wada F, Yamamoto T, Obika S, Hari Y. Synthesis, duplex-forming ability, enzymatic stability, and in vitro antisense potency of oligonucleotides including 2'-C,4'-C-ethyleneoxy-bridged thymidine derivatives. Org Biomol Chem 2018; 15:3955-3963. [PMID: 28440828 DOI: 10.1039/c7ob00698e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We synthesized thymidine derivatives of 2'-C,4'-C-ethyleneoxy-bridged 2'-deoxyribonucleic acids with an 8'-methyl group ((R)-Me-EoDNA and (S)-Me-EoDNA) and without any substituent (EoDNA). Oligonucleotides including these EoDNAs showed high hybridization abilities with complementary RNA and excellent enzymatic stabilities compared with natural DNA. Moreover, the in vitro antisense potency of oligonucleotides with these EoDNAs and our recently reported methylene-EoDNAs was investigated and compared with that of LNA, which is a practical chemical modification for oligonucleotide-therapeutic agents. The results showed that EoDNAs and methylene-EoDNAs could be promising candidates for antisense technology.
Collapse
Affiliation(s)
- Takashi Osawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Rana N, Kumar M, Khatri V, Maity J, Prasad AK. Enzymatic separation of epimeric 4- C-hydroxymethylated furanosugars: Synthesis of bicyclic nucleosides. Beilstein J Org Chem 2017; 13:2078-2086. [PMID: 29062429 PMCID: PMC5647706 DOI: 10.3762/bjoc.13.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023] Open
Abstract
Conversion of D-glucose to 4-C-hydroxymethyl-1,2-O-isopropylidene-α-D-ribofuranose, which is a key precursor for the synthesis of different types of bicyclic/spiro nucleosides, led to the formation of an inseparable 1:1 mixture of the desired product and 4-C-hydroxymethyl-1,2-O-isopropylidene-α-D-xylofuranose. A convenient environment friendly Novozyme®-435 catalyzed selective acetylation methodology has been developed for the separation of an epimeric mixture of ribo- and xylotrihydroxyfuranosides in quantitative yields. The structure of both the monoacetylated epimers, i.e., 5-O-acetyl-4-C-hydroxymethyl-1,2-O-isopropylidene-α-D-ribo- and xylofuranose obtained by enzymatic acetylation, has been confirmed by an X-ray study on their corresponding 4-C-p-toluenesulfonyloxymethyl derivatives. Furthermore, the two separated epimers were used for the convergent synthesis of two different types of bicyclic nucleosides, which confirms their synthetic utility.
Collapse
Affiliation(s)
- Neha Rana
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Manish Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Vinod Khatri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Jyotirmoy Maity
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| |
Collapse
|