1
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Geng M, Huang M, Kuang J, Fang W, Miao M, Ma Y. Application of N, N-Dimethylethanolamine as a One-Carbon Synthon for the Synthesis of Pyrrolo[1,2- a]quinoxalines, Quinazolin-4-ones, and Benzo[4,5]imidazoquinazolines via [5 + 1] Annulation. J Org Chem 2022; 87:14753-14762. [PMID: 36254464 DOI: 10.1021/acs.joc.2c02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of N-heterocycles composes a significant part of synthetic chemistry. In this report, a Cu(II)-catalyzed green and efficient synthesis of pyrrolo[1,2-a]quinoxaline, quinazolin-4-one, and benzo[4,5]imidazoquinazoline derivatives was developed, employing N,N-dimethylethanolamine (DMEA) as a C1 synthon. Green oxidant O2 is critical in these transformations, facilitating the formation of a key intermediate─a reactive iminium ion. The method conducted under mild conditions is compatible with a diversity of functional groups, providing an appealing alternative to the previously developed protocols.
Collapse
Affiliation(s)
- Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China.,Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Minzhao Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - MaoZhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| |
Collapse
|
3
|
Wu D, Liu Z, Chang Y, Chen J, Qi H, Dong Y, Xu H. Cp*Co III-catalyzed formal [4 + 2] cycloaddition of 2-phenyl-1 H-imidazoles to afford imidazo[1,2- c]quinazoline derivatives. Org Biomol Chem 2022; 20:4993-4998. [PMID: 35694953 DOI: 10.1039/d2ob00697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic protocol based on Cp*CoIII-catalyzed C-H amidation/annulation of 2-aryl-1H-imidazoles with 1,4,2-dioxazol-5-ones was developed to give imidazo[1,2-c]quinazoline derivatives with broad substrate scope in moderate to good yields. The method has good prospects of application in the synthesis of imidazo[1,2-c]quinazoline drugs.
Collapse
Affiliation(s)
- Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhengqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yiting Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, Guiyang 550014, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Escudero J, Mampuys P, Mensch C, Bheeter CB, Vroemans R, Orru RV, Harvey J, Maes BU. Synthesis of Heterocycles via Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Escudero
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Pieter Mampuys
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Carl Mensch
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Charles B. Bheeter
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Robby Vroemans
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Romano V.A. Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Center Court, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Jeremy Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B3001, Belgium
| | - Bert U.W. Maes
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| |
Collapse
|
5
|
Nickel (II) coordination on cross-linked poly triazine-urea-sulfonamide grafted onto Mg-Al LDHs: As a green catalytic system for the synthesis of tetrazolo[1,5-a] pyrimidines. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
I2/TBHP promoted isocyanide insertion cyclization reaction for the synthesis of quinazolin fused benzoimidazole as a selective methanol detection probe. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Philips A, Raja D, Arumugam A, Lin W, Chandru Senadi G. Copper‐Catalyzed Oxidative C−C Cleavage of Carbohydrates: An Efficient Access to Quinazolinone Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abigail Philips
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Dineshkumar Raja
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Wei‐Yu Lin
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 80708 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| |
Collapse
|
8
|
Wen LR, Wang NN, Du WB, Ma Q, Zhang LB, Li M. Nickel-promoted oxidative domino C sp3-H/N-H bond double-isocyanide insertion reaction to construct pyrrolin-2-ones. Org Biomol Chem 2021; 19:2895-2900. [PMID: 33725062 DOI: 10.1039/d1ob00139f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The first nickel-catalyzed oxidative domino Csp3-H/N-H double isocyanide insertion reaction of acetamides with isocyanides has been developed for the synthesis of pyrrolin-2-one derivatives. A wide range of acetamides bearing various functional groups are compatible with this reaction system by utilizing Ni(acac)2 as a catalyst. In this transformation, isocyanide could serve as a C1 connector and insert into the inactive Csp3-H bond, representing an effective way to construct heterocycles.
Collapse
Affiliation(s)
- Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Faisal M, Saeed A. Chemical Insights Into the Synthetic Chemistry of Quinazolines: Recent Advances. Front Chem 2021; 8:594717. [PMID: 33585397 PMCID: PMC7873916 DOI: 10.3389/fchem.2020.594717] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
In medicinal chemistry, one of the most significant heterocyclic compounds are quinazolines, possessing broad range of biological properties such as anti-bacterial, anti-fungal, anti-HIV, anti-cancer, anti-inflammatory, and analgesic potencies. Owing to its numerous potential applications, in the past two decades, there is an increase in the importance of designing novel quinazolines, exploring promising routes to synthesize quinazolines, investigating different properties of quinazolines, and seeking for potential applications of quinazolines. The present review article describes synthesis of quinazolines via eco-friendly, mild, atom-efficient, multi-component synthetic strategies reported in the literature. The discussion is divided into different parts as per the key methods involved in the formation of quinazoline skeletons, aiming to provide readers an effective methodology to a better understanding. Consideration has been taken to cover the most recent references. Expectedly, the review will be advantageous in future research for synthesizing quinazolines and developing more promising synthetic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Meng X, Wu D, Zhang Y, Zhao Y. PPTS‐Catalyzed Bicyclization Reaction of 2‐Isocyanobenzaldehydes with Various Amines: Synthesis of Diverse Fused Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiang‐He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Dan‐Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Jia Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
11
|
Donthiboina K, Anchi P, Gurram S, Sai Mani G, Lakshmi Uppu J, Godugu C, Shankaraiah N, Kamal A. Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg Chem 2020; 103:104191. [PMID: 32891862 DOI: 10.1016/j.bioorg.2020.104191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023]
Abstract
A new series of N-(2-(1H-benzo[d]imidazol-2-yl)phenyl) cinnamides was prepared and evaluated for their in vitro cytotoxic activity using various cancer cell lines viz. A549 (human non-small cell lung cancer), MDA-MB-231 (human triple negative breast cancer), B16-F10 (mouse melanoma), BT-474 (human breast cancer), and 4 T1 (mouse triple negative breast cancer). In the series of tested compounds, 12h showed potent cytotoxic activity against non-small cell lung cancer cell line with IC50 value of 0.29 ± 0.02 µM. The cytoxicity of most potent compound 12h was also tested on NRK-52E (normal rat kidney epithelial cell line) and showed less cytotoxicity compared to cancer cells. Tubulin polymerization assay indicated that the compound 12h was able to impede the cell division by inhibiting tubulin polymerization. Moreover, molecular docking study also suggested the binding of 12h at the colchicine-binding site of the tubulin protein. Cell cycle analysis revealed that the compound 12h arrests G2/M phase. In addition, 12h induced apoptosis in A549 cell lines was evaluated by various staining studies like acridine orange, DAPI, analysis of mitochondrial membrane potential, annexin V-FITC, and DCFDA assays.
Collapse
Affiliation(s)
- Kavitha Donthiboina
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sowmyasree Gurram
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Geeta Sai Mani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Jaya Lakshmi Uppu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L. C(sp2)–H Functionalization of Imidazole at the C2- and C4-Position via Palladium-Catalyzed Isocyanide Insertion Leading to Indeno[1,2-d]imidazole and Imidazo[1,2-a]indole Derivatives. J Org Chem 2020; 85:11014-11024. [DOI: 10.1021/acs.joc.0c01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ying-Ying Liu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Yin-Qing Xie
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ding Yuan
- School of Biology and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan Province, 617000, P. R. of China
| | - Min Lei
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei Province, 443002, P. R. of China
| |
Collapse
|
13
|
Chinthaginjala S, Kuppi Reddy Gari D, Nagamangala Ramachandra S, Sureshbabu VV. An efficient metal-free synthesis of carbodiimide-tethered amino acid conjugates. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1769132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Divya Kuppi Reddy Gari
- Peptide Research Laboratory, Department of Chemistry, Bangalore University, Bangalore, India
| | | | - Vommina V. Sureshbabu
- Peptide Research Laboratory, Department of Chemistry, Bangalore University, Bangalore, India
| |
Collapse
|
14
|
Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 99:103774. [DOI: 10.1016/j.bioorg.2020.103774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
|
15
|
Kwak JP, Dao PDQ, Cho CS. Synthesis of 2-Aminoquinazoline- and 2-Aminopyrimidine-Fused Hybrid Scaffolds by Copper-Catalyzed C(sp
2
)-N Coupling and Cyclization Followed by Oxidation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jung Pyo Kwak
- Department of Applied Chemistry; Kyungpook National University; 80 Daehakro 41566 Bukgu Daegu Republic of Korea
| | - Pham Duy Quang Dao
- Department of Applied Chemistry; Kyungpook National University; 80 Daehakro 41566 Bukgu Daegu Republic of Korea
| | - Chan Sik Cho
- Department of Applied Chemistry; Kyungpook National University; 80 Daehakro 41566 Bukgu Daegu Republic of Korea
| |
Collapse
|
16
|
Collet JW, Morel B, Lin HC, Roose TR, Mampuys P, Orru RVA, Ruijter E, Maes BUW. Synthesis of Densely Functionalized Pyrimidouracils by Nickel(II)-Catalyzed Isocyanide Insertion. Org Lett 2020; 22:914-919. [PMID: 31942797 PMCID: PMC7011176 DOI: 10.1021/acs.orglett.9b04387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A robust nickel-catalyzed oxidative
isocyanide insertion/C–H
amination by reaction of readily available N-uracil-amidines
with isocyanides affording polysubstituted pyrimidouracils has been
reported. The reaction proceeds in moderate to quantitative yield,
under mild conditions (i.e., green solvent, air atmosphere,
moderate temperature). The broad range of structurally diverse isocyanides
and N-uracil-amidines that are tolerated make this
method an interesting alternative to the currently available procedures
toward pyrimidouracils.
Collapse
Affiliation(s)
- Jurriën W Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands.,Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Bénédicte Morel
- Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Hung-Chien Lin
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Thomas R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Pieter Mampuys
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands.,Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Romano V A Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Bert U W Maes
- Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| |
Collapse
|
17
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2020; 59:540-558. [DOI: 10.1002/anie.201905838] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
18
|
Patil V, Sekar N, Padalkar VS, Rajput J, Patil SR, Patil SV. Molecular properties of 5-(1H-Benzo[D]Oxa, thia, imid azole-2-Yl)-2-methyl quinazolin-4-ol fluorescent brighteners: Theoretical and experimental approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Biswas S, Khatun R, Dolai M, Haque Biswas I, Haque N, Sengupta M, Islam MS, Islam SM. Catalytic formation of N3-substituted quinazoline-2,4(1H,3H)-diones by Pd(ii)EN@GO composite and its mechanistic investigations through DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/c9nj04288a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Modified GO based palladium composite was synthesized for catalytic synthesis of N3-substituted ouinazoline-2,4(1H,3H)-diones and the mechanistic route was theoretically investigated.
Collapse
Affiliation(s)
- Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Resmin Khatun
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Malay Dolai
- Department of Chemistry
- Prabhat Kumar College
- Purba Medinipur 721401
- India
| | | | - Najirul Haque
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Manideepa Sengupta
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
- Refinery Technology Division
| | | | | |
Collapse
|
20
|
Luo L, Li H, Liu J, Zhou Y, Dong L, Xiao YC, Chen FE. Transition-metal and oxidant-free approach for the synthesis of diverse N-heterocycles by TMSCl activation of isocyanides. RSC Adv 2020; 10:29257-29262. [PMID: 35521093 PMCID: PMC9055958 DOI: 10.1039/d0ra04636a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023] Open
Abstract
A highly efficient TMSCl-mediated addition of N-nucleophiles to isocyanides has been achieved. This transition-metal and oxidant-free strategy has been applied to the construction of various N-heterocyles such as quinazolinone, benzimidazole and benzothiazole derivatives by the use of distinct amino-based binucleophiles. The notable feature of this protocol includes its mild reaction condition, broad functional group tolerance and excellent yield. A highly efficient TMSCl-mediated addition of N-nucleophiles to isocyanides has been achieved.![]()
Collapse
Affiliation(s)
- Liangliang Luo
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Hongyan Li
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jinxin Liu
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Lin Dong
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
21
|
Shiva Kumar K, Naikawadi PK, Jatoth R, Dandela R. Bimetallic Cu/Pd-catalyzed three-component azide-alkyne cycloaddition/isocyanide insertion: synthesis of fully decorated tricyclic triazoles. Org Biomol Chem 2019; 17:7320-7324. [PMID: 31343035 DOI: 10.1039/c9ob01175g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The construction of fully decorated 1,2,3-triazole-fused 5-, 6- and 7-membered rings has been disclosed via a bimetallic relay-catalyzed cascade process combining azide-alkyne cycloaddition, C(sp2)-H functionalization of intermediary 1,2,3-triazoles and isocyanide insertion. The salient features of this methodology include simple starting materials, reduced synthetic steps, good substrate scope and high efficiency.
Collapse
Affiliation(s)
- K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | | | | | | |
Collapse
|
22
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
23
|
Manna SK, Das T, Samanta S. Polycyclic Benzimidazole: Synthesis and Photophysical Properties. ChemistrySelect 2019. [DOI: 10.1002/slct.201901941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Tapas Das
- Department of ChemistryNIT Jamshedpur Jamshedpur 831014 India
| | | |
Collapse
|
24
|
Ramesh R, Maheswari S, Malecki JG, Lalitha A. NaN3 Catalyzed Highly Convenient Access to Functionalized 4H-chromenes: A Green One-pot Approach for Diversity Amplification. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2018.1564678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rathinam Ramesh
- Department of Chemistry, Periyar University, Salem, Tamil Nadu, India
| | | | | | - Appaswami Lalitha
- Department of Chemistry, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
25
|
Yuan WK, Liu YF, Lan Z, Wen LR, Li M. Nickle Catalysis Enables Access to Thiazolidines from Thioureas via Oxidative Double Isocyanide Insertion Reactions. Org Lett 2018; 20:7158-7162. [PMID: 30398058 DOI: 10.1021/acs.orglett.8b03098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient synthesis of thiazolidine-2,4,5-triimine derivatives was developed via Ni-catalyzed oxidative double isocyanide insertion to thioureas under air conditions, in which thioureas play three roles as a substrate, a ligand, and overcoming isocyanide polymerization. The reaction is featured by employing a low-cost and low loading Ni(acac)2 catalyst, without any additives, and high atom economy. This is the first example to directly apply a Ni(II) catalyst in oxidative double isocyanide insertion reactions.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Fang Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Zhenggang Lan
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
26
|
Iodine-catalyzed synthesis of 5-benzoyl-8H-phthalazino[1,2-b]quinazolin-8-one derivatives via a domino reaction involving a benzyl automatic oxidation by oxygen. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ambethkar S, Kalaiselvi M, Ramamoorthy J, Padmini V. I 2-Catalyzed Oxidative Cross-Coupling Reaction of Methyl Ketones and 2-(2-Aminophenyl) Benzimidazole: Facile Access to Benzimidazo[1,2- c]quinazoline. ACS OMEGA 2018; 3:5021-5028. [PMID: 31458715 PMCID: PMC6641929 DOI: 10.1021/acsomega.8b00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 05/25/2023]
Abstract
A general and efficient iodine-catalyzed metal-free oxidative cross-coupling reaction of methyl ketones with 2-(1H-benzo[d]imidazol-2-yl)aniline has been established. This is a new synthetic strategy for the synthesis of benzimidazo[1,2-c]quinazoline derivatives involving C(sp3)-H oxidation, condensation, and cyclization processes.
Collapse
|
28
|
Dao PD, Ho SL, Cho CS. Synthesis of N-Fused Benzimidazole-4,7-diones via Sequential Copper-Catalyzed C-N Coupling/Cyclization and Oxidation. ACS OMEGA 2018; 3:5643-5653. [PMID: 31458764 PMCID: PMC6642034 DOI: 10.1021/acsomega.8b00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 05/04/2023]
Abstract
2-(2-Bromovinyl)- and 2-(2-bromoaryl)-benzimidazoles, including their 4,7-dimethoxy analogs, react with primary amides by microwave irradiation (or usual heating) in dimethylformamide in the presence of a catalytic amount of CuI along with a base to give the corresponding benzo[4,5]imidazo[1,2-c]-pyrimidines and -quinazolines in good yields. Treatment of benzo[4,5]imidazo[1,2-c]-pyrimidines and -quinazolines having methoxy group on benzimidazole moiety with aqueous ceric ammonium nitrate affords unprecedented N-fused hybrid scaffolds, benzo[4,5]imidazo[1,2-c]-pyrimidin-6,9-diones and -quinazoline-8,11-diones, respectively, in high yields.
Collapse
|
29
|
Balwe SG, Jeong YT. One-step construction of complex polyheterocycles via a sequential post-GBB cyclization/spiro ring expansion triggered by a [1,5]-hydride shift. Org Chem Front 2018. [DOI: 10.1039/c8qo00071a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient tandem route to novel amino-indazolo[3′,2′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones has been explored.
Collapse
Affiliation(s)
- Sandip Gangadhar Balwe
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| |
Collapse
|
30
|
Ahmadi F, Mirzaei P, Bazgir A. Cobalt-catalyzed isocyanide insertion cyclization to dihydrobenzoimidazotriazins. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Xu P, Wang F, Wei TQ, Yin L, Wang SY, Ji SJ. Palladium-Catalyzed Incorporation of Two C1 Building Blocks: The Reaction of Atmospheric CO 2 and Isocyanides with 2-Iodoanilines Leading to the Synthesis of Quinazoline-2,4(1H,3H)-diones. Org Lett 2017; 19:4484-4487. [PMID: 28763234 DOI: 10.1021/acs.orglett.7b01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Pd-catalyzed insertion and cycloaddition of CO2 and isocyanide into 2-iodoanilines under atmospheric pressure has been developed and affords quinazoline-2,4(1H,3H)-diones through the formation of new C-C, C-O, and C-N bonds under mild conditions. This reaction provides a new and practical method not only for the construction of quinazoline-2,4(1H,3H)-diones but also for the efficient utilization of carbon dioxide.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Tian-Qi Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| |
Collapse
|
32
|
Dao PD, Lee HK, Sohn HS, Yoon NS, Cho CS. Synthesis of Benzo[4,5]imidazo[1,2- c]pyrimidin-1-amines and Their Analogs via Copper-Catalyzed C-N Coupling and Cyclization. ACS OMEGA 2017; 2:2953-2958. [PMID: 31457630 PMCID: PMC6640920 DOI: 10.1021/acsomega.7b00693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 05/05/2023]
Abstract
2-(2-Bromovinyl)benzimidazoles and 2-(2-bromophenyl)benzimidazoles react with cyanamide by microwave irradiation in dimethylformamide in the presence of a catalytic amount of CuI along with a base to give the corresponding benzo[4,5]imidazo[1,2-c]pyrimidin-1-amines and benzo[4,5]imidazo[1,2-c]quinazolin-6-amines, respectively, in moderate to good yields. 2-(2-Bromophenyl)indoles also react with cyanamide under similar conditions to afford indolo[1,2-c]quinazolin-6-amines. The reaction pathway seems to proceed via a sequence such as intermolecular C-N coupling, C-N formative cyclization, and tautomerization.
Collapse
Affiliation(s)
- Pham Duy
Quang Dao
- Department
of Applied Chemistry, Department of Materials Science and Metallurgical
Engineering, and Department of Textile System Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea
| | - Ha Kyeong Lee
- Department
of Applied Chemistry, Department of Materials Science and Metallurgical
Engineering, and Department of Textile System Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea
| | - Ho-Sang Sohn
- Department
of Applied Chemistry, Department of Materials Science and Metallurgical
Engineering, and Department of Textile System Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea
| | - Nam Sik Yoon
- Department
of Applied Chemistry, Department of Materials Science and Metallurgical
Engineering, and Department of Textile System Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea
| | - Chan Sik Cho
- Department
of Applied Chemistry, Department of Materials Science and Metallurgical
Engineering, and Department of Textile System Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea
- E-mail: (C.S.C.)
| |
Collapse
|