1
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
2
|
Zeng X, Cheng Z, Xie Y, Gu Y. Transition-metal-free Synthesis of tetra-substituted Vinyl Iodides by Cascade Sequential Reaction of α-Keto Acids, 1-Iodoalkynes, and Alkyl Halides. Chem Asian J 2023; 18:e202201117. [PMID: 36458644 DOI: 10.1002/asia.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The cascade sequential reaction of α-keto acids, 1-iodoalkynes, and alkyl halides are reported herein to synthesize tetra-substituted vinyl iodides. It represents an efficient protocol to access a diverse range of tetra-substituted vinyl iodides starting from simple materials in a one-pot fashion, featuring mild reaction conditions, ease of operation, and broad substrate scope.
Collapse
Affiliation(s)
- Xiaobao Zeng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Zhenfeng Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yushan Xie
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yunhui Gu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
3
|
Fang S, Chen W, Jiang H, Ma R, Wu W. Palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chem Commun (Camb) 2022; 58:9666-9669. [PMID: 35946388 DOI: 10.1039/d2cc03298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to the synthesis of 3-bromoindoles via palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes has been described. This protocol features high atom economy, excellent chemo- and regioselectivities, and good functional group tolerance. Moreover, the resultant 3-bromoindoles can be transformed to various functionalized indole derivatives, which demonstrates the practicability of this method in organic synthesis.
Collapse
Affiliation(s)
- Songjia Fang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ruize Ma
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Fernández-Canelas P, Barrio P, González JM. Merging gold catalysis and haloethynyl frames: emphasis on halide-shift processes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wang Q, Shi Y, Huang X, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Ru(II)-Catalyzed Difunctional Pyridyloxy-Directed Regio- and Stereospecific Addition of Carboxylic Acids to Internal Alkynes. Org Lett 2021; 24:379-384. [PMID: 34935395 DOI: 10.1021/acs.orglett.1c04052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient Ru(II)-catalyzed regio- and stereospecific hydro-oxycarbonylation of unsymmetrical internal alkynes bearing a difunctional 2-pyridyloxy directing group with carboxylic acids has been developed, which provides allylic (Z)-enol esters in good to excellent yields with a broad substrate scope under mild conditions. The difunctional directing group can be diversely derivatized, particularly undergoing allylic substitution with various nucleophiles to afford β-functionalized (Z)-enol esters without directing groups.
Collapse
Affiliation(s)
- Qin Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
6
|
Kumari C, Goswami A. A Facile Transition Metal‐Free Ionic Liquid [BMIM]OH Mediated Regio‐ and Stereoselective Hydrocarboxylation of Alkynylnitriles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chandresh Kumari
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| |
Collapse
|
7
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
8
|
Gold-Catalyzed Addition of Carboxylic Acids to Alkynes and Allenes: Valuable Tools for Organic Synthesis. Catalysts 2020. [DOI: 10.3390/catal10101206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this contribution, the application of gold-based catalysts in the hydrofunctionalization reactions of alkynes and allenes with carboxylic acids is comprehensively reviewed. Both intra- and intermolecular processes, leading respectively to lactones and linear unsaturated esters, are covered. In addition, cascade transformations involving the initial cycloisomerization of an alkynoic acid are also discussed.
Collapse
|
9
|
Tobrman T, Edlová T, Čubiňák M. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThis short review summarizes the latest advances in the cross-coupling reactions of double and triple electrophilic templates bearing halogen atoms and an activated C–O bond. Reactions involving the formation of a C–C bond as part of di-, tri-, and tetrasubstituted double bond systems are highlighted.1 Introduction2 Cross-Coupling Reactions of Halovinyl Tosylates3 Cross-Coupling Reactions of Halovinyl Triflates4 Cross-Coupling Reactions of Halovinyl Phosphates5 Cross-Coupling Reactions of Halovinyl Esters6 Conclusion
Collapse
|
10
|
Abstract
The synthesis of two novel enol esters, namely hex-1-en-2-yl indole-2-carboxylate and hex-1-en-2-yl 1-(hex-1-en-2-yl)-indole-2-carboxylate, is presented. Both compounds were generated by addition of indole-2-carboxylic acid to 1-hexyne employing [RuCl2(η6-p-cymene)(PPh3)] and [AuCl(PPh3)]/AgPF6, respectively, as catalysts.
Collapse
|
11
|
Chen L, Zhang L, Yan G, Huang D. Recent Advances of Cinnamic Acids in Organic Synthesis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lihua Chen
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
12
|
Abstract
In the last years there has been an increasing interest in the search for protocols to obtain β-haloenol esters in an efficient and selective manner as they are versatile building blocks in synthetic organic chemistry. In this article, metal-catalyzed transformations allowing the access to both acyclic and cyclic (i.e., haloenol lactones) β-haloenol esters are reviewed. Metal-catalyzed reactions in which these molecules participate as substrates are also discussed.
Collapse
|
13
|
Liu G, Zhang X, Kuang G, Lu N, Fu Y, Peng Y, Xiao Q, Zhou Y. Phosphine-Free Ru-Catalyzed Regio- and Stereoselective Addition of Benzoic Acids to Trifluoromethylated Alkynes toward Facile Access to Trifluoromethyl Group-Substituted ( E)-Enol Esters. ACS OMEGA 2020; 5:4158-4166. [PMID: 32149245 PMCID: PMC7057715 DOI: 10.1021/acsomega.9b03936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A combination of ruthenium catalyst with silver salt and copper salt was proved to be a highly efficient protocol for the direct addition reaction of benzoic acids with unsymmetrical trifluoromethylated internal alkynes. Diverse trifluoromethyl group-substituted (E)-enol esters were readily obtained for a broad substrate scope in moderate to good yields with excellent regio- and stereoselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Guangyuan Liu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Xingxing Zhang
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Guanghua Kuang
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Naihao Lu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Yang Fu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Yiyuan Peng
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Qiang Xiao
- Jiangxi
Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, No. 605 Fenglin Road, Nanchang 330013, China
| | - Yirong Zhou
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
14
|
Petko D, Koh S, Tam W. Transition Metal-Catalyzed Reactions of Alkynyl Halides. Curr Org Synth 2020; 16:546-582. [PMID: 31984930 DOI: 10.2174/1570179416666190329200616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transition metal-catalyzed reactions of alkynyl halides are a versatile means of synthesizing a wide array of products. Their use is of particular interest in cycloaddition reactions and in constructing new carbon-carbon and carbon-heteroatom bonds. Transition metal-catalyzed reactions of alkynyl halides have successfully been used in [4+2], [2+2], [2+2+2] and [3+2] cycloaddition reactions. Many carbon-carbon coupling reactions take advantage of metal-catalyzed reactions of alkynyl halides, including Cadiot-Chodkiewicz, Suzuki-Miyaura, Stille, Kumada-Corriu and Inverse Sonogashira reactions. All the methods of constructing carbon-nitrogen, carbon-oxygen, carbon-phosphorus, carbon-sulfur, carbon-silicon, carbon-selenium and carbon-tellurium bonds employed alkynyl halides. OBJECTIVE The purpose of this review is to highlight and summarize research conducted in transition metalcatalyzed reactions of alkynyl halides in recent years. The focus will be placed on cycloaddition and coupling reactions, and their scope and applicability to the synthesis of biologically important and industrially relevant compounds will be discussed. CONCLUSION It can be seen from the review that the work done on this topic has employed the use of many different transition metal catalysts to perform various cycloadditions, cyclizations, and couplings using alkynyl halides. The reactions involving alkynyl halides were efficient in generating both carbon-carbon and carbonheteroatom bonds. Proposed mechanisms were included to support the understanding of such reactions. Many of these reactions face retention of the halide moiety, allowing additional functionalization of the products, with some new products being inaccessible using their standard alkyne counterparts.
Collapse
Affiliation(s)
- Dina Petko
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel Koh
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
15
|
Yao M, Zhang J, Yang S, Xiong H, Li L, Liu E, Shi H. Efficient synthesis of 1-iodoalkynes via Al 2O 3 mediated reaction of terminal alkynes and N-iodosuccinimide. RSC Adv 2020; 10:3946-3950. [PMID: 35492642 PMCID: PMC9048840 DOI: 10.1039/d0ra00251h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Iodination of terminal alkynes using N-iodosuccinimide (NIS) in the presence of γ-Al2O3 was developed to afford 1-iodoalkynes with good to excellent yields (up to 99%). This described approach featured excellent chemoselectivity, good functional group tolerance, and utilization of an inexpensive catalyst.
Collapse
Affiliation(s)
- Ming Yao
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
| | - Jingjing Zhang
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
- Wuhan Institute of Technology 206 Guanggu First Road Wuhan Hubei 430205 P. R. China
| | - Sen Yang
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
| | - Hangxing Xiong
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
- Wuhan Institute of Technology 206 Guanggu First Road Wuhan Hubei 430205 P. R. China
| | - Li Li
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
- Wuhan Institute of Technology 206 Guanggu First Road Wuhan Hubei 430205 P. R. China
| | - E Liu
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
| | - Hong Shi
- Jingchu University of Technology 33 Xiangshan Road Jingmen Hubei 448000 P. R. China
| |
Collapse
|
16
|
Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water. Catalysts 2019. [DOI: 10.3390/catal9110955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The synthesis and characterization of novel gold(I) complexes containing hydrophilic ferrocenylphosphino sulfonate ligands, i.e., compounds [AuCl{(η5-C5H3PR2(SO3iPr))Fe(η5-C5H5)}] (R = Ph (2a), p-Tol (2b), Cy (2c)), are presented, including a single-crystal X-ray diffraction study on 2a. Complexes 2a–c were checked as catalysts for the intermolecular addition of carboxylic acids to nonactivated internal alkynes using water as a green reaction medium. The best results in terms of activity were obtained with 2a in combination with AgOAc, which was able to promote the selective anti addition of a variety of aromatic, aliphatic, and α,β-unsaturated carboxylic acids to both symmetrical and unsymmetrical internal alkynes at 60 °C, employing metal loadings of only 2 mol %.
Collapse
|
17
|
Affiliation(s)
- Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC) Centro de Innovación en Química Avanzada (ORFEO‐CINQA), Departamento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
18
|
Zimin DP, Dar'in DV, Eliseeva AA, Novikov AS, Rassadin VA, Kukushkin VY. Gold-Catalyzed Functionalization of Semicarbazides with Terminal Alkynes to Achieve Substituted Semicarbazones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitry P. Zimin
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Dmitry V. Dar'in
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Anastasiya A. Eliseeva
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Valentin A. Rassadin
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
19
|
Wu Y, Xiao L, Mao C, Zang Z, Zhou C, Cai G. Regio‐ and Stereoselective Synthesis of Enynyl‐Aryl Ethers Enabled by Copper/Iodide Tandem Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yun‐Bin Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Lin Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Chun‐Li Mao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Zhong‐Lin Zang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Cheng‐He Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Gui‐Xin Cai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Key Laboratory of Applied Chemistry of Chongqing Municipality, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
20
|
Praveen C. Carbophilic activation of π-systems via gold coordination: Towards regioselective access of intermolecular addition products. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Sun T, Chen K, Zhang C, You T, Yin P. 1,3‐O‐Transposition or Trisubstituted Z‐Enol Ester? A Comparative Study of Reactions of Ynones. Chem Asian J 2019; 14:1941-1944. [DOI: 10.1002/asia.201900315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tian‐Yu Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 China
| | - Kai Chen
- College of Materials Science and EngineeringCentral South University of Forestry and Technology Changsha 410004 China
- Lab of Computational Chemistry and Drug DesignState Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Changyuan Zhang
- College of Chemistry and Bio-EngineeringYichun University Yichun 336000 China
| | - Tingting You
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 China
| |
Collapse
|
22
|
León F, Francos J, López-Serrano J, García-Garrido SE, Cadierno V, Pizzano A. Double asymmetric hydrogenation of conjugated dienes: a self-breeding chirality route for C2 symmetric 1,4-diols. Chem Commun (Camb) 2019; 55:786-789. [DOI: 10.1039/c8cc09391a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric hydrogenation of 1 is performed with good enantio- and diastereoselectivity with Rh-Duphos/BPE catalysts providing a self-breeding chirality process.
Collapse
Affiliation(s)
- Félix León
- Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla
- 41092 Sevilla
- Spain
| | - Javier Francos
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla
- 41092 Sevilla
- Spain
| | - Sergio E. García-Garrido
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Antonio Pizzano
- Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla
- 41092 Sevilla
- Spain
| |
Collapse
|
23
|
Hong X, Ma F, Zha D, Li H. Silver‐Catalyzed Stereoselective
trans
Addition of 4‐Hydroxycoumarins to Haloalkynes and Late‐Stage Nitration. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianfang Hong
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Fang Ma
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Dandan Zha
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Hongji Li
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| |
Collapse
|
24
|
Muthusamy G, Pansare SV. Stereoselective synthesis of E-3-(arylmethylidene)-5-(alkyl/aryl)-2(3H)-furanones by sequential hydroacyloxylation-Mizoroki–Heck reactions of iodoalkynes. Org Biomol Chem 2018; 16:7971-7983. [DOI: 10.1039/c8ob02063a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stereoselective hydroacyloxylation of iodoalkynes with β-aryl cinnamic acids and subsequent Mizoroki–Heck reaction provides an efficient route to substituted 2(3H)-furanones.
Collapse
Affiliation(s)
| | - Sunil V. Pansare
- Department of Chemistry
- Memorial University
- St. John's
- Canada A1B 3X7
| |
Collapse
|
25
|
Jiang G, Hu W, Li J, Zhu C, Wu W, Jiang H. Palladium-catalyzed primary amine-directed regioselective mono- and di-alkynylation of biaryl-2-amines. Chem Commun (Camb) 2018; 54:1746-1749. [DOI: 10.1039/c7cc09308j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Palladium-catalyzed primary amine-directed controlled alkynylation of biaryl-2-amines has been developed by using haloalkynes as an alkynylating reagent.
Collapse
Affiliation(s)
- Guangbin Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Weigao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
26
|
Jiang G, Li J, Zhu C, Wu W, Jiang H. Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids To Construct Functionalized Isocoumarins. Org Lett 2017; 19:4440-4443. [DOI: 10.1021/acs.orglett.7b01919] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangbin Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - JianXiao Li
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
27
|
León F, González-Liste PJ, García-Garrido SE, Arribas I, Rubio M, Cadierno V, Pizzano A. Broad Scope Synthesis of Ester Precursors of Nonfunctionalized Chiral Alcohols Based on the Asymmetric Hydrogenation of α,β-Dialkyl-, α,β-Diaryl-, and α-Alkyl-β-aryl-vinyl Esters. J Org Chem 2017; 82:5852-5867. [DOI: 10.1021/acs.joc.7b00710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Félix León
- Instituto
de Investigaciones Químicas (IIQ) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), CSIC, Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Pedro J. González-Liste
- Laboratorio
de Compuestos Organometálicos y Catálisis (Unidad Asociada
al CSIC), Centro de Innovación en Química Avanzada (ORFEO−CINQA),
Departamento de Química Orgánica e Inorgánica,
Instituto Universitario de Química Organometálica “Enrique
Moles”, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergio E. García-Garrido
- Laboratorio
de Compuestos Organometálicos y Catálisis (Unidad Asociada
al CSIC), Centro de Innovación en Química Avanzada (ORFEO−CINQA),
Departamento de Química Orgánica e Inorgánica,
Instituto Universitario de Química Organometálica “Enrique
Moles”, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inmaculada Arribas
- Instituto
de Investigaciones Químicas (IIQ) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), CSIC, Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Miguel Rubio
- Instituto
de Investigaciones Químicas (IIQ) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), CSIC, Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Victorio Cadierno
- Laboratorio
de Compuestos Organometálicos y Catálisis (Unidad Asociada
al CSIC), Centro de Innovación en Química Avanzada (ORFEO−CINQA),
Departamento de Química Orgánica e Inorgánica,
Instituto Universitario de Química Organometálica “Enrique
Moles”, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Antonio Pizzano
- Instituto
de Investigaciones Químicas (IIQ) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), CSIC, Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
28
|
Chung R, Vo A, Hein JE. Copper-Catalyzed Hydrogen/Iodine Exchange in Terminal and 1-Iodoalkynes. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryan Chung
- Department
of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Anh Vo
- Department
of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Jason E. Hein
- Department
of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|