1
|
Bera D, Sarkar R, Dhar T, Saha P, Ghosh P, Mukhopadhyay C. DMSO promoted catalyst-free oxidative C-N/C-O couplings towards synthesis of imidazoles and oxazoles. Org Biomol Chem 2024; 22:3684-3692. [PMID: 38624070 DOI: 10.1039/d4ob00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Dimethyl sulfoxide (DMSO)-promoted catalyst-free oxidative C-N coupling and C-O coupling under oxidant-free conditions are outlined. This protocol is operationally simple and leads to various functionalized substituted imidazoles or oxazoles in good yields. To date, a very limited number of oxidation protocols have been established, where DMSO acts solely as a catalyst or an oxidant or both. In this report, DMSO is not only used as a C-N/C-O coupling agent but is also used as the oxidant required for these oxidative transformations. Hence, our demonstrated DMSO-promoted catalyst-free coupling transformation has the ability to lead to a new dimension in the field of oxidative coupling.
Collapse
Affiliation(s)
- Debasish Bera
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Rajib Sarkar
- Department of Chemistry, Prabhu Jagatbandhu College, Jhorehat, Andul-Mouri, Howrah-711302, India
| | - Tiyasa Dhar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Romanov AR, Kondrashov EV, Zinchenko SV. Synthesis of 5-(trifluoroacetyl)imidazoles from Bromoenones and Benzimidamides via Aza-Michael Initiated Ring Closure Reaction. Curr Org Synth 2024; 21:195-209. [PMID: 37078355 DOI: 10.2174/1570179420666230420100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION A simple method for the preparation of 5-(trifluoroacetyl)imidazoles was elaborated. METHODS The reaction of trifluoromethyl(α-bromoalkenyl)ketones with benzimidamides was employed to afford the target heterocycles in good yields. RESULTS The assembly of imidazole core proceeds via aza-Michael adduct formation followed by intramolecular nucleophilic substitution and spontaneous aromatization as an oxidation sequence. CONCLUSION The yields of target imidazoles can be improved by the use of soft oxidizing agents.
Collapse
Affiliation(s)
- Alexey R Romanov
- The Laboratory of Halogen Organic Compound, A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Evgeniy V Kondrashov
- The Laboratory of Halogen Organic Compound, A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Sergey V Zinchenko
- The Laboratory of Halogen Organic Compound, A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
| |
Collapse
|
3
|
Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides. Catalysts 2022. [DOI: 10.3390/catal12080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Imino gold carbenoid species have been recognized as key intermediates in a plethora of processes involving gold-activated alkynes. Here, we explored the pathways of the Au(I)-catalyzed [3 + 2] reaction between the mild nucleophiles: anthranil, 1,2,4-oxadiazole, or 4,5-dihydro-1,2,4-oxadiazole, and an ynamide, PhC≡C-N(Ts)Me, proceeding via the formation of the aforementioned α-imino gold carbene intermediate which, after intramolecular capture, regioselectively produces 2-amino-3-phenyl-7-acyl indoles, N-acyl-5-aminoimidazoles, or N-alkyl-4-aminoimidazoles, respectively. In all cases, the regioselectivity of the substituents at 2, 3 in the 7-acyl-indole ring and 4, 5 in the substituted imidazole ring is decided at the first transition state, involving the attack of nitrogen on the C1 or C2 carbon of the activated ynamide. A subsequent and steep energy drop furnishes the key α-imino gold carbene. These features are more pronounced for anthranil and 4,5-dihydro-1,2,4-oxadiazole reactions. Strikingly, in the 4,5-dihydro-1,2,4-oxadiazole reaction the significant drop of energy is due to the formation of an unstable α-imino gold carbene, which after a spontaneous benzaldehyde elimination is converted to a stabilized one. Compared to anthranil, the reaction pathways for 1,2,4-oxadiazoles or 4,5-dihydro-1,2,4-oxadiazoles are found to be significantly more complex than anticipated in the original research. For instance, compared to the formation of a five-member ring from the α-imino gold carbene, one competitive route involves the formation of intermediates consisting of a four-member ring condensed with a three-member ring, which after a metathesis and ring expansion led to the imidazole ring.
Collapse
|
4
|
Leets KA, Pacherille A, Chisholm JD. Tandem Oxidation-Bromination of Allylic Alcohols with a TEMPO-Oxone-Et4NBr Reactant System. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Kaur N, Rajput M, Bhardwaj P. Synthesis of heterocycles using guanidine: An overview. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2087045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Mansi Rajput
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
6
|
Makra Z, Bényei A, Puskás LG, Kanizsai I. One‐Pot Access towards 4,5‐Disubstituted 2‐Amino‐1
H
‐imidazoles Starting from Mannich Substrates and their Transformation Utilities. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zsófia Makra
- AVIDIN Ltd. Alsó kiköt– sor 11/D 6726 Szeged Hungary
| | - Attila Bényei
- Department of Physical Chemistry Laboratory for X‐ray Diffraction University of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | | | - Iván Kanizsai
- AVIDIN Ltd. Alsó kiköt– sor 11/D 6726 Szeged Hungary
| |
Collapse
|
7
|
Golestaneh Z, Ghashang M. New strategy for the preparation of imidazole derivatives containing thiazole ring via ring opening/coupling/cyclization/decarboxylation cascade. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D. Combretastatin-Inspired Heterocycles as Antitubulin Anticancer Agents. ACS OMEGA 2018; 3:9754-9769. [PMID: 31459105 PMCID: PMC6644768 DOI: 10.1021/acsomega.8b00996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Combretastatin (CA-4) and its analogues are undergoing several clinical trials for treating different types of tumors. In this work, the antiproliferative activity of a series of 2-aminoimidazole-carbonyl analogs of clinically relevant combretastatins A-4 (CA-4) and A-1 was evaluated using a cell-based assay. Among the compounds tested, C-13 and C-21 displayed strong antiproliferative activities against HeLa cells. C-13 inhibited the proliferation of lung carcinoma (A549) cells more potently than combretastatin A-4. C-13 also retarded the migration of A549 cells. Interestingly, C-13 displayed much stronger antiproliferative effects against breast carcinoma and skin melanoma cells compared to noncancerous breast epithelial and skin fibroblast cells. C-13 strongly disassembled cellular microtubules, perturbed the localization of EB1 protein, inhibited mitosis in cultured cells, and bound to tubulin at the colchicine site and inhibited the polymerization of reconstituted microtubules in vitro. C-13 treatment increased the level of reactive oxygen species and induced apoptosis via poly(ADP-ribose) polymerase-cleavage in HeLa cells. The results revealed the importance of the 2-aminoimidazole-carbonyl motif as a double bond replacement in combretastatin and indicated a pharmacodynamically interesting pattern of H-bond acceptors/donors and requisite syn-templated aryls.
Collapse
Affiliation(s)
- Neha Hura
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Sankar K. Guchhait
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Veltri L, Giofrè SV, Devo P, Romeo R, Dobbs AP, Gabriele B. A Palladium Iodide-Catalyzed Oxidative Aminocarbonylation–Heterocyclization Approach to Functionalized Benzimidazoimidazoles. J Org Chem 2018; 83:1680-1685. [DOI: 10.1021/acs.joc.7b03167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Veltri
- Laboratory
of Industrial and Synthetic Organic Chemistry (LISOC), Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Salvatore V. Giofrè
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via SS Annunziata, 98168 Messina, Italy
| | - Perry Devo
- School
of Science, University of Greenwich, Central Avenue,
Chatham Maritime, Kent ME4 4TB, U.K
| | - Roberto Romeo
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via SS Annunziata, 98168 Messina, Italy
| | - Adrian P. Dobbs
- School
of Science, University of Greenwich, Central Avenue,
Chatham Maritime, Kent ME4 4TB, U.K
| | - Bartolo Gabriele
- Laboratory
of Industrial and Synthetic Organic Chemistry (LISOC), Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|