1
|
Zhang W, Zhu X, Tong H, Zhao H, Gu Y, Chu W. Photoinduced Vitamin-B 12-Catalyzed meta-C-H Bromination/Chlorination of Phenol Derivatives Assisted by a U-Shaped Nitrile Template. Org Lett 2024; 26:9073-9078. [PMID: 39405089 DOI: 10.1021/acs.orglett.4c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A photoinduced vitamin-B12-catalyzed meta-C-H bromination/chlorination of phenol derivatives was established using a nitrile directing template and N-bromosuccinimide (NBS)/N-chlorosuccinimide (NCS) as halogenated reagents, and a series of meta-bromination/chlorination products were obtained in yields of 51 to 80%. This strategy overcame the selectivity problem of phenols, which have difficulty obtaining meta-products through conventional electrophilic reactions. Furthermore, natural product resveratrol and an intermediate of the γ-secretase inhibitor were successfully synthesized, which demonstrates the practicability of this method.
Collapse
Affiliation(s)
- Weiya Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xianghui Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Huixin Tong
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Hongbo Zhao
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuying Gu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
2
|
Kowalczyk K, Błauż A, Krawczyk K, Rychlik B, Plażuk D. Design and synthesis of ferrocenyl 1,4-dihydropyridines and their evaluation as kinesin-5 inhibitors. Dalton Trans 2024; 53:16038-16053. [PMID: 39291736 DOI: 10.1039/d4dt01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Kinesin-5 inhibitors offer cancer cell-targeted approach, thus securing reduced systemic toxicity compared to other antimitotic agents. By modifying the 1,4-dihydropyridine-based kinesin-5 inhibitor CPUYL064 with a ferrocenyl moiety (Fc), we designed and prepared a series of organometallic hybrids that show high antiproliferative activity, with the best compounds exhibiting up to 19-fold increased activity. This enhanced activity can be attributed to the presence of the ferrocenyl moiety.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Krzysztof Krawczyk
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
3
|
Miki K, Maeda K, Matsubara R, Hayashi M. Synthesis of 2-(Pyridin-2-yl)phenols and 2-(Pyridin-2-yl)anilines. J Org Chem 2024; 89:5797-5810. [PMID: 38563078 DOI: 10.1021/acs.joc.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report a new synthetic strategy for 2-(pyridin-2-yl)phenols and 2-(pyridin-2-yl)anilines catalyzed by a Pd/C-ethylene system. The starting materials, 2-(pyridin-2-yl)cyclohexan-1-ones, can be easily prepared by the reaction of substituted pyridine N-oxide and cyclohexanones. The most useful feature of this method is that both 2-(pyridin-2-yl)phenols and 2-(pyridin-2-yl)anilines are easily synthesized independently using the same compound as a starting material, simply by adding or not adding a nitrogen source.
Collapse
Affiliation(s)
- Keigo Miki
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Katsumi Maeda
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Li K, Kelly HR, Franco A, Batista VS, Baráth E. Dehydrogenation and Transfer Hydrogenation of Alkenones to Phenols and Ketones on Carbon-Supported Noble Metals. ACS Catal 2024; 14:2883-2896. [PMID: 38449532 PMCID: PMC10913045 DOI: 10.1021/acscatal.3c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
The catalytic dehydrogenation of substituted alkenones on noble metal catalysts supported on carbon (Pt/C, Pd/C, Rh/C, and Ru/C) was investigated in an organic phase under inert conditions. The dehydrogenation and semihydrogenation of the enone starting materials resulted in aromatic compounds (primary products), saturated cyclic ketones (secondary products), and cyclic alcohols (minor products). Pd/C exhibits the highest catalytic activity, followed by Pt/C and Rh/C. Aromatic compounds remain the primary products, even in the presence of hydrogen donors. Joint experimental and theoretical analyses showed that the four catalytic materials stabilize a common dienol intermediate on the metal surfaces, formed by keto-enol tautomerization. This intermediate subsequently forms aromatic products upon dehydrogenation. The binding orientation of the enone reactants on the catalytic surface is strongly metal-dependent, as the M-O bond distance changes substantially according to the metal. The longer M-O bonds (Pt: 2.84 Å > Pd: 2.23 Å > Rh: 2.17 Å > Ru: 2.07 Å) correlate with faster reaction rates and more favorable keto-enol tautomerization, as shorter distances correspond to a more stabilized starting material. Tautomerization is shown to occur via a stepwise surface-assisted pathway. Overall, each of the studied metals exhibits a distinct balance of enthalpy and entropy of activation (ΔH°‡, ΔS°‡), offering unique possibilities in the realm of enone dehydrogenation reactions that can be achieved by suitable selection of catalytic materials.
Collapse
Affiliation(s)
- Katja Li
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching bei München D-85748, Germany
| | - H. Ray Kelly
- Department
of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Ana Franco
- Leibniz-Institut
für Katalyse (e.V. LIKAT), Albert Einstein Str. 29a, Rostock D-18059, Germany
| | - Victor S. Batista
- Department
of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Eszter Baráth
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching bei München D-85748, Germany
- Leibniz-Institut
für Katalyse (e.V. LIKAT), Albert Einstein Str. 29a, Rostock D-18059, Germany
| |
Collapse
|
5
|
Lei M, Liu H, Tan X, Chen C, Lou H, Zhou M, Li J, Wu W, Pan W. Design, Synthesis, anti-inflammatory activity Evaluation, preliminary exploration of the Mechanism, molecule Docking, and structure-activity relationship analysis of batatasin III analogs. Bioorg Med Chem Lett 2023; 96:129527. [PMID: 37852423 DOI: 10.1016/j.bmcl.2023.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Most clinical drugs used to treat inflammation have serious gastrointestinal, renal, and cardiovascular side effects during long-term treatment. The development of new anti-inflammatory agents from natural products and their derivatives is a powerful approach to overcome these adverse effects. Batatasin III, a bibenzyl natural product, has been found to have anti-inflammatory activity. Compared with other anti-inflammatory agents, batatasin III has a simple and unique structure. Therefore, batatasin III and its analogs might have the potential to treat inflammation with only mild adverse effects as a new type of anti-inflammatory agent. Herein, we synthesized 26 batatasin III analogs and evaluated the anti-inflammatory activity in vitro. Analog 21 significantly inhibited (p < 0.01) nitric oxide production with an IC50 value of 12.95 μM. Western blot analysis further revealed that 21 reduced iNOS, phosphorylated p65, and β-catenin expression in a concentration-dependent manner. These results indicated that 21 could be a potential lead compound for developing a drug candidate for ulcerative colitis. Molecular docking analysis showed that p65 might be a potential target of 21 for the treatment of inflammatory disease. In addition, we analyzed the structure-activity relationship of the analogs, which provides a basis for future structural modifications.
Collapse
Affiliation(s)
- Mingcai Lei
- College of Pharmacy, Guizhou University, Guiyang 550014, China
| | - Hanfei Liu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xin Tan
- College of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Chao Chen
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550014, China
| | - Huayong Lou
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mei Zhou
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jinyu Li
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Wei Wu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Weidong Pan
- College of Pharmacy, Guizhou University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
6
|
Synthesis of resveratrol derivatives and their anti-virulence activity as T3SS inhibitors of Salmonella. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
(NHC)Pd(II) hydride-catalyzed dehydroaromatization by olefin chain-walking isomerization and transfer-dehydrogenation. Nat Commun 2022; 13:5507. [PMID: 36127352 PMCID: PMC9489721 DOI: 10.1038/s41467-022-33163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Transition-metal-catalyzed homogeneous dehydrogenation and isomerization are common organic molecular activation reactions. Palladium hydrides are good olefin isomerization catalysts but are usually short-lived species under redox-active dehydrogenation conditions. Here, we show that Pd-H in the presence of an N-heterocyclic carbene ligand and an alkene regulator enables transfer-dehydroaromatization, avoiding the homo-disproportionation pathway. The desired product is obtained with up to 99:1 selectivity, and the exo-to-endo olefin isomerization can be carried out in one pot. In contrast to previously reported methods that rely on the efficient removal of Pd-H, the approach reported herein benefits from the steric effects of the N-heterocyclic carbene and the choice of alkene to regulate the competing reactivity of allylic C‒H activation and hydropalladation. This method circumvents the challenges associated with tedious olefin separation and a low exo-to-endo olefin isomerization ratio and expands the scope to include challenging endo- and exo-cyclic olefins under mild, neutral, and oxidant-free conditions. Overall, herein, we provide a strategy to synthesize (hetero)aromatic compounds via chemoselective dehydrogenation of cyclic alkenes over ketones and the dehydrogenative Diels-Alder reaction of a cyclic enamine. Aromatic compounds can be prepared via dehydrogenation of cyclic compounds. Here the authors report the dehydroaromatization of endocyclic and exocyclic olefins via chain-walking isomerization and transfer-dehydrogenation catalyzed by palladium N-heterocyclic carbene complexes in the presence of alkenes as sacrificial reagents.
Collapse
|
8
|
Lu Z, Xu G, Li Y, Lu C, Shen Y, Zhao B. Discovery of N-arylcinnamamides as novel erythroblast enucleation inducers. Bioorg Chem 2022; 128:106105. [PMID: 36031698 DOI: 10.1016/j.bioorg.2022.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Derivation of mature red blood cells (RBCs) from stem cells in vitro is a promising solution to the current shortage of blood supply, in which terminal enucleation is the rate-limiting step. Here we discovered two cinnamamides B8 and B16 showed potential activities of enhancing the enucleation of erythroblasts through the screening of "in-house" compound library. Subsequently, twenty-four N-arylcinnamamides were rationally designed and synthesized on the basis of the structure of B8 and B16, in which N-(9H-carbazol-2-yl)cinnamamide (KS-2) significantly elevated the percentage of reticulocytes in the cultured mouse fetal liver cells in vitro (relative enucleation = 2.43). The underlying mechanism of KS-2 in promoting mouse erythroid enucleation is accelerating the process of cell cycle exit via p53 activation in late stage erythrocytes. These results strongly suggest that compound KS-2 is worthy of further study as a potential erythrocyte enucleation inducer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanxia Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Xu G, Li Z, Ding Y, Shen Y. Discovery of 1,2-diphenylethene derivatives as human DNA topoisomerase II catalytic inhibitors and antitumor agents. Eur J Med Chem 2022; 243:114706. [DOI: 10.1016/j.ejmech.2022.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
10
|
Maeda K, Matsubara R, Hayashi M. Synthesis of Substituted Anilines from Cyclohexanones Using Pd/C-Ethylene System and Its Application to Indole Synthesis. Org Lett 2021; 23:1530-1534. [PMID: 33606535 DOI: 10.1021/acs.orglett.0c04056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of anilines and indoles from cyclohexanones using a Pd/C-ethylene system is reported. A simple combination of NH4OAc and K2CO3 under nonaerobic conditions was found to be the most suitable to perform this reaction. Hydrogen transfer between cyclohexanone and ethylene generates the desired products. The reaction tolerates a variety of substitutions on the starting cyclohexanones.
Collapse
Affiliation(s)
- Katsumi Maeda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Jiang P, Chen S, Huang H, Hu K, Xia Y, Deng GJ. Metal-free synthesis of indolo[2,3-b]indoles through aerobic cascade dehydrogenative aromatization/oxidative annulation. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
12
|
Kontaxakis E, Trantas E, Ververidis F. Resveratrol: A Fair Race Towards Replacing Sulfites in Wines. Molecules 2020; 25:E2378. [PMID: 32443913 PMCID: PMC7288175 DOI: 10.3390/molecules25102378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, significant efforts to produce healthier wines has led to the replacement or reduction of the addition of sulfites, using alternative substances or techniques. Resveratrol and related biophenols seem to be of great interest, since beyond their protective nature and contrary to sulfites they can positively affect consumer health. These bioactive phytochemicals are naturally produced in grapes as evolutionary acquired mechanisms against pathogens and UV irradiation. However, despite the efforts made so far attempting to develop economic and industrially adopted isolation techniques, available quantities of these biophenols for commercial use are still quite limited. Therefore, such molecules are still not able to meet the needs of industrial use due to their prohibitive marketable cost. In this review we summarize the efforts that have been made to biosynthesize these molecules through alternative, innovative ways. Increasing interest in modern biotechnological approaches has shed light on the exploitation of metabolically engineered microbial factories, instead of plants, to produce molecules of industrial interest. Such approaches, also reviewed here, are expected to lower the cost and appear promising to produce enough surplus to attract further oenological experimentation upon yielding functional wines. This development is expected to attract further industrial attention, continuing the race to partially or totally replace the external addition of sulfites. We also review important physicochemical properties of resveratrol in relation to enriching wines.
Collapse
Affiliation(s)
| | | | - Filippos Ververidis
- Plant Biochemistry and Biotechnology Group, Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, GR 710 04 Heraklion, Greece; (E.K.); (E.T.)
| |
Collapse
|
13
|
Paymode DJ, Ramana CV. Studies toward the Total Synthesis of Parvifolals A/B: An Intramolecular o-Quinone Methide [4 + 2]-Cycloaddition To Construct the Central Tetracyclic Core. ACS OMEGA 2019; 4:810-818. [PMID: 31459360 PMCID: PMC6648467 DOI: 10.1021/acsomega.8b02777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
Two different approaches funded upon the intramolecular [4 + 2]-cycloaddition of in situ generated o-quinone methides have been explored to construct the central tetracyclic core of parvifolals A/B. At the outset, a cross-pinacol coupling of 2-formyl tri-O-methyl resveratrol with 4-methoxysalicylaldehyde followed by acid treatment was found to provide the desired tetracyclic core with an internal olefin. The requisite pendant aryl group has been introduced by a Pd-catalyzed direct coupling of corresponding diazonium salt.
Collapse
Affiliation(s)
- Dinesh J Paymode
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| |
Collapse
|
14
|
Yadav A, Srivastava A, Mobin SM, Samanta S. L-Proline-Catalyzed One-Pot Diastereoselective Synthesis of Cyclohexanols from β-Aryl-γ-nitroketones and α,β-Unsaturated Aldehydes: A New Route to 2,3,4,6-Tetrasubstituted Phenols. ChemistrySelect 2019. [DOI: 10.1002/slct.201803521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anubha Yadav
- Discipline of Chemistry; Indian Institute of Technology Indore Simrol, Indore; 453552 Madhya Pradesh India
| | - Anvita Srivastava
- Nanhi Pari Seemant Engineering Institute Pithoragarh; Uttarakhand 262501 India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology Indore Simrol, Indore; 453552 Madhya Pradesh India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore Simrol, Indore; 453552 Madhya Pradesh India
| |
Collapse
|
15
|
Sako M, Aoki T, Zumbrägel N, Schober L, Gröger H, Takizawa S, Sasai H. Chiral Dinuclear Vanadium Complex-Mediated Oxidative Coupling of Resorcinols. J Org Chem 2018; 84:1580-1587. [PMID: 30501179 DOI: 10.1021/acs.joc.8b02494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method for the highly regio- and enantioselective oxidative coupling of resorcinols has been established by using dibrominated dinuclear vanadium(V) catalyst 1c under air. When resorcinols bearing an aryl substituent were applied as substrates to the coupling, axially chiral biresorcinols were obtained as single regioisomers in high yield with up to 98% ee.
Collapse
Affiliation(s)
- Makoto Sako
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Takanori Aoki
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Nadine Zumbrägel
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Lukas Schober
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| |
Collapse
|
16
|
Kim BS, Ahn S, Koh D, Cho SK, Song YW, Sung J, Lim Y. 1 H and 13 C NMR characterization of 1,3,4-oxadiazole derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:782-791. [PMID: 29411896 DOI: 10.1002/mrc.4718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Beom Soo Kim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 05029, Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 05029, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Korea
| | - Somi Kim Cho
- Faculty of Biotechnology, Jeju National University, SARI, Jeju, 63243, Korea
| | - Yeon Woo Song
- Faculty of Biotechnology, Jeju National University, SARI, Jeju, 63243, Korea
| | - Jiha Sung
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
17
|
Liu X, Astruc D. Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800343] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Didier Astruc
- ISM, UMR CNRS 5255; Université de Bordeaux; 351 Cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
18
|
Shimomoto Y, Matsubara R, Hayashi M. Synthesis of Arylamines viaNon-AerobicDehydrogenation Using a Palladium/Carbon-Ethylene System. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuya Shimomoto
- Department of Chemistry, Graduate School of Science; Kobe University, Nada; Kobe 657-8501 Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science; Kobe University, Nada; Kobe 657-8501 Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science; Kobe University, Nada; Kobe 657-8501 Japan
| |
Collapse
|
19
|
Wagh G, Autade S, Patil PC, Akamanchi KG. o-Iodoxybenzoic acid mediated generation of aryl free radicals: synthesis of stilbenes through C–C cross-coupling with β-nitrostyrenes. NEW J CHEM 2018. [DOI: 10.1039/c7nj04701k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of an aryl free radicals in the presence of nitrostyrenes through a combination of aryl hydrazines and o-iodoxybenzoic acid led to the synthesis of stilbenes by forming a new carbon–carbon bond after subsequent elimination of a nitrosyl radical.
Collapse
Affiliation(s)
- Ganesh Wagh
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| | - Snehalata Autade
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| | - Pravin C. Patil
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| | - Krishnacharya G. Akamanchi
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| |
Collapse
|
20
|
Liu X, Chen J, Ma T. Catalytic dehydrogenative aromatization of cyclohexanones and cyclohexenones. Org Biomol Chem 2018; 16:8662-8676. [DOI: 10.1039/c8ob02351d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prompted by the scant attention paid by published literature reviews to the comprehensive catalytic dehydrogenative aromatization of cyclohexa(e)nones, this review describes recent methods developed to-date involving transition-metal-catalyzed oxidative aromatization and metal-free strategies for the transformation of cyclohexa(e)nones to substituted phenols.
Collapse
Affiliation(s)
- Xueli Liu
- College of Material and Chemical Engineering
- Chuzhou University
- Chuzhou
- China
| | - Jun Chen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
- Department of Biomedical and Pharmaceutical Sciences
| | - Tianlin Ma
- College of Material and Chemical Engineering
- Chuzhou University
- Chuzhou
- China
| |
Collapse
|
21
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|