1
|
Yuan Y, Lo KC, Szeto L, Chan WK. Synthesis of Pyrazinopyrazine-Fused Azaacenes through Direct Condensation Reactions between Quinoxalinediamine and Diketones. J Org Chem 2020; 85:6372-6379. [PMID: 32312048 DOI: 10.1021/acs.joc.9b03504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a new type of pyrazinopyrazine-fused azaacene molecules by a simple and versatile procedure. 6,9-Dihexyldithieno[3,2-f:2',3'-h]quinoxaline-2,3-diamine was synthesized through the condensation between 2,7-dihexylbenzo[1,2-b:6,5-b']dithiophene-4,5-diamine and bis(2,2,2-trifluoroethyl) oximidate. A series of derivatized molecules with extended two-dimensional aromatic fused-ring structures could be obtained by simple condensation reactions between the quinoxalinediamine intermediate and various diketones. The reaction was proved to be effective for the construction of tetrazaacene derivatives with extended heterocyclic aromatic ring systems. The molecules obtained exhibit low-lying LUMO levels that can be fine-tuned by modifying the molecular structure. Crystallographic results showed that in a solid state, the molecules form "brick wall" structures with a close π-π stacking mode. The stacking between the π-ring systems in the molecules could be further enhanced by expanding the large 2D planar-conjugated structure.
Collapse
Affiliation(s)
- Yuping Yuan
- Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Kin-Cheung Lo
- Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Lap Szeto
- Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Wai-Kin Chan
- Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Santra S, Khasanov AF, Mukherjee A, Rahman M, Kovalev IS, Kopchuk DS, Zyryanov GV, Majee A, Chupakhin ON, Charushin VN. Mono- and Polyazatriphenylene-Based Ligands: An Updated Library of Synthetic Strategies (2001-2018). European J Org Chem 2018. [DOI: 10.1002/ejoc.201800635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sougata Santra
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| | - Albert F. Khasanov
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| | - Anindita Mukherjee
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| | - Matiur Rahman
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| | - Igor S. Kovalev
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis; Ural Division of the Russian Academy of Sciences; 22 S. Kovalevskoy Str. 620219 Yekaterinburg Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis; Ural Division of the Russian Academy of Sciences; 22 S. Kovalevskoy Str. 620219 Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of Chemistry; Visva-Bharati (A Central University); 731235 Santiniketan India
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis; Ural Division of the Russian Academy of Sciences; 22 S. Kovalevskoy Str. 620219 Yekaterinburg Russian Federation
| | - Valery N. Charushin
- Department of Organic and Biomolecular Chemistry; Chemical Engineering Institute; Ural Federal University; 19 Mira Str. 620002 Yekaterinburg, K-2 Russian Federation
| |
Collapse
|
3
|
Konda M, Maiti S, Jadhav RG, Das AK. Redox-Active Peptide-Functionalized Quinquethiophene-Based Electrochromic π-Gel. Chem Asian J 2018; 13:204-209. [PMID: 29266836 DOI: 10.1002/asia.201701460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Indexed: 12/13/2022]
Abstract
An electrochromic system based on a self-assembled dipeptide-appended redox-active quinquethiophene π-gel is reported. The designed peptide-quinquethiophene consists of a symmetric bolaamphiphile that has two segments: a redox-active π-conjugated quinquethiophene core for electrochromism, and peptide motif for the involvement of molecular self-assembly. Investigations reveal that self-assembly and electrochromic properties of the π-gel are strongly dependent on the relative orientation of peptidic and quinquethiophene scaffolds in the self-assembly system. The colors of the π-gel film are very stable with fast and controlled switching speed at room temperature.
Collapse
Affiliation(s)
- Maruthi Konda
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Sayan Maiti
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Rohit G Jadhav
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Kato SI, Jin S, Kimura T, Yoshikawa N, Nara D, Imamura K, Shiota Y, Yoshizawa K, Katoono R, Yamanobe T, Uehara H, Nakamura Y. Trithiazolyl-1,3,5-triazines bearing decyloxybenzene moieties: synthesis, photophysical and electrochemical properties, and self-assembly behavior. Org Biomol Chem 2018; 16:3584-3595. [DOI: 10.1039/c8ob00471d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We synthesized the first members of trithiazolyl-1,3,5-triazines that combine attractive photophysical and self-assembling properties.
Collapse
|
5
|
Takahashi N, Kato SI, Yamaji M, Ueno M, Iwabuchi R, Shimizu Y, Nitani M, Ie Y, Aso Y, Yamanobe T, Uehara H, Nakamura Y. Tetraalkoxyphenanthrene-Fused Hexadecadehydro[20]- and Tetracosadehydro[30]annulenes: Syntheses, Aromaticity/Antiaromaticity, Electronic Properties, and Self-Assembly. J Org Chem 2017; 82:8882-8896. [DOI: 10.1021/acs.joc.7b01165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nobutaka Takahashi
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shin-ichiro Kato
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Minoru Yamaji
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masahiko Ueno
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryunosuke Iwabuchi
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yui Shimizu
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masashi Nitani
- The
Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yutaka Ie
- The
Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshio Aso
- The
Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Yamanobe
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hiroki Uehara
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yosuke Nakamura
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
6
|
Meti P, Gong YD. 2,6-Di(thiophenyl)-1,5-dihydrodipyrrolopyrazine (DT-DPP) structural isomers as donor–acceptor–donor molecules and their optoelectronic investigation. RSC Adv 2017. [DOI: 10.1039/c7ra06270b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis and characterization of two new D–A–D molecules via Pd catalyzed C–C and C–N coupling reactions. This illustrates the potential of DT-DPP for promising optoelectronic applications.
Collapse
Affiliation(s)
- Puttavva Meti
- Innovative Drug Library Research Center
- Department of Chemistry
- College of Science
- Dongguk University
- Seoul 04620
| | - Young-Dae Gong
- Innovative Drug Library Research Center
- Department of Chemistry
- College of Science
- Dongguk University
- Seoul 04620
| |
Collapse
|