1
|
Zhao L, Cai W, Yuan S, Wang L, Zhang R, Li J, Wu D, Kong Y. Optically Pure Co(III) Complex Absorbed by Electrochemiluminescence-Active Covalent Organic Framework as an Enantioselective Recognition Platform to Give Opposite Responses Toward Amino Alcohol Enantiomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57649-57658. [PMID: 39382309 DOI: 10.1021/acsami.4c11835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Although covalent organic frameworks (COFs) accompanied by electrochemiluminescence (ECL) behavior have been introduced in recent years, they are still rarely applied for ECL-based enantioselective sensing, especially giving high recognition efficiency. In the current study, an achiral ionic COF comprised of the pyridinium unit is synthesized in the linkage of the carbon-nitrogen cation bond through the Zincke reaction. Interestingly, the synthesized ionic COF can generate clear ECL owing to the presence of electroactive species. Then, the ECL-active achiral COF is employed to absorb the chiral Co(III) complex for enantioselective sensing. As a result, the developed ECL sensor displays discriminative responses toward amino alcohol enantiomers. When the chiral Co(III) complex with (R)-configuration is used, the examined (S)-amino alcohols result in ECL enhancement, whereas (R)-amino alcohols lead to ECL quenching. The maximum ECL intensity ratio between (S)- and (R)-amino alcohols is up to 47.7. In addition, the recognition mechanism is investigated in detail. Finally, a good linear relation between enantiomeric composition and ECL intensity is developed and appropriate for the accurate analysis of the enantiomeric purities of unknown samples. In short, we believe that this study constructs an effective strategy to combine the respective advantages of COFs and ECL for high-efficiency enantioselective sensing.
Collapse
Affiliation(s)
- Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Formen JSSK, Howard JR, Anslyn EV, Wolf C. Circular Dichroism Sensing: Strategies and Applications. Angew Chem Int Ed Engl 2024; 63:e202400767. [PMID: 38421186 DOI: 10.1002/anie.202400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
The analysis of the absolute configuration, enantiomeric composition, and concentration of chiral compounds are frequently encountered tasks across the chemical and health sciences. Chiroptical sensing methods can streamline this work and allow high-throughput screening with remarkable reduction of operational time and cost. During the last few years, significant methodological advances with innovative chirality sensing systems, the use of computer-generated calibration curves, machine learning assistance, and chemometric data processing, to name a few, have emerged and are now matched with commercially available multi-well plate CD readers. These developments have reframed the chirality sensing space and provide new opportunities that are of interest to a large group of chemists. This review will discuss chirality sensing strategies and applications with representative small-molecule CD sensors. Emphasis will be given to important milestones and recent advances that accelerate chiral compound analysis by outperforming traditional methods, conquer new directions, and pioneering efforts that lie at the forefront of chiroptical high-throughput screening developments. The goal is to provide the reader with a thorough understanding of the current state and a perspective of future directions of this rapidly emerging field.
Collapse
Affiliation(s)
| | - James R Howard
- Chemistry Department, University of Texas at Austin, Austin TX, USA
| | - Eric V Anslyn
- Chemistry Department, University of Texas at Austin, Austin TX, USA
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington DC, USA
| |
Collapse
|
3
|
Feuge N, Wilhelm R. Straightforward synthesis of chiral sulfonate-based ionic liquids from amino alcohols for chiral recognition. Chirality 2023; 35:993-1011. [PMID: 37497749 DOI: 10.1002/chir.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
New sulfonate-based chiral salts were prepared from amino alcohols and sodium hydroxymethanesulfonate, vinyl sulfonate, or sultone. The synthesis started with different amino acids from the chiral pool and gave the desired products in just four steps. After cation metathesis, the salts were explored as chiral solvating agents (CSAs) in NMR studies. The new chiral ionic liquids (CILs) were successfully able to interact with different chiral guest molecules and formed diastereomeric aggregates. In some cases, baseline separation was observed. The influence of the structural differences in the CIL as well as the structural requirements of the guest molecule is discussed.
Collapse
Affiliation(s)
- Niklas Feuge
- Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
5
|
Wu D, Wang F, Ma C, Tan L, Cai W, Li J, Kong Y. A Real-Time Strategy for Chiroptical Sensing and Enantiomeric Excess Determination of Primary Amines via an Acid-Base Reaction. Org Lett 2022; 24:5226-5229. [PMID: 35822909 DOI: 10.1021/acs.orglett.2c02246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two achiral aromatic carboxylic acids that included the 1,8-naphthalimide group and an imidazolium cation were synthesized and exploited as chiroptical sensors. These compounds showed the real-time discrimination and enantiomeric excess determination of chiral amines and amino alcohols via an acid-base interaction, especially for UV-silent chiral compounds.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
6
|
Zheng X, Tang T, Li L, Xu LW, Huang S, Zhao Y. Application of aromatic amide-derived atropisomers as chiral solvating agents for discrimination of optically active mandelic acid derivatives in 1 H nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:86-92. [PMID: 34106483 DOI: 10.1002/mrc.5185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Non-biaryl atropisomers and their stereochemistry have attracted much attentions in the past years. However, application of the non-biaryl atropisomers as chiral solvating agents is yet to be explored. In this work, four aromatic amide-derived atropisomeric phosphine ligands (hosts) were used as chiral solvating agents to recognize various mandelic acid derivatives (guests) in 1 H nuclear magnetic resonance (NMR) spectroscopy. It is found that chiral center configurations of the four hosts have different effects on the enantiorecognition to the used guests. In addition, the host and guest interaction was further investigated by determination of the host-guest complex stoichiometry using the Job's method and density functional theory calculation, respectively. Moreover, chiral analysis accuracy of these hosts was evaluated through relationship between enantiomeric excess values of 4-chloromandelic acid provided by NMR and gravimetry, respectively.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Tingfeng Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Khan FF, Mondal S, Chandra S, Neuman NI, Sarkar B, Lahiri GK. On the non-innocence and reactive versus non-reactive nature of α-diketones in a set of diruthenium frameworks. Dalton Trans 2021; 50:1106-1118. [DOI: 10.1039/d0dt03400b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Slightly modified ligand designs in diruthenium setups have major impacts on the reactivity/stability of coordination complexes. The 1,2-bis(2-hydroxyphenyl)ethane-1,2-dione bridge is also potentially redox non-innocent.
Collapse
Affiliation(s)
- Farheen Fatima Khan
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Saikat Mondal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinaitonschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- D-70550 Stuttgart
- Germany
| | - Nicolas I. Neuman
- Lehrstuhl für Anorganische Koordinaitonschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- D-70550 Stuttgart
- Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinaitonschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- D-70550 Stuttgart
- Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
8
|
Mądry T, Czapik A, Kwit M. Point-to-Axial Chirality Transmission: A Highly Sensitive Triaryl Chirality Probe for Stereochemical Assignments of Amines. J Org Chem 2020; 85:10413-10431. [PMID: 32806087 PMCID: PMC7458434 DOI: 10.1021/acs.joc.0c00734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 01/17/2023]
Abstract
A readily available stereodynamic and the electronic circular dichroism (ECD)-silent 2,5-di(1-naphthyl)-terephthalaldehyde-based probe has been applied for chirality sensing of primary amines. The chiral amine (the inductor) forces a change in the structure of the chromophore system through the point-to-axial chirality transmission mechanism. As a result, efficient induction of optical activity in the chromophoric system is observed. The butterflylike structure of the probe, with the terminal aryl groups acting as changeable "wings", allowed for the generation of exciton Cotton effects in the region of 1Bb electronic transition in the naphthalene chromophores. The sign of the exciton couplets observed for inductor-reporter systems might be correlated with an absolute configuration of the inductor, whereas the linear relationship between amplitudes of the specific Cotton effect and enantiomeric excess of the parent amine gives potentiality for quantitative chirality sensing. Despite the structural simplicity, the probe turned out to be unprecedentedly highly sensitive to even subtle differences in the inductor structure (i.e., O vs CH2).
Collapse
Affiliation(s)
- Tomasz Mądry
- Department
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznan, Poland
| | - Agnieszka Czapik
- Department
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznan, Poland
| | - Marcin Kwit
- Department
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznan, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznanskiego 10, 61 614 Poznan, Poland
| |
Collapse
|
9
|
Wu D, Pan F, Gao L, Tao Y, Kong Y. An ionic-based carbon dot for enantioselective discrimination of nonaromatic amino alcohols. Analyst 2020; 145:3395-3400. [PMID: 32239048 DOI: 10.1039/d0an00399a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, ionized chiral carbon dots, (S,S)-C-dots-1 (λex = 430 nm, λem = 480 nm), were synthesized via a facile route with relatively high quantum yield (∼24.4%) and used as a fluorescent chiral sensor. One of the advantages of the synthetic process is that it avoids the loss of the chiral center. That is, the chiral bromo compound can directly form an ionic pair with the pyridyl group, which is derived from the amine precursor in the first step. Furthermore, (S,S)-C-dots-1 shows clear discrimination toward different configurations of nonaromatic amino alcohols in the presence of Cu(ii). When the (R)-isomer is added to a solution of (S,S)-C-dots-1 + Cu(ii), it shows much higher fluorescent intensity than the (S)-isomer. The values of IR/IS are 2.9 and 2.3 for 2-aminobutan-1-ol and 2-aminopropan-1-ol, respectively. In summary, we believe that this work can expand the synthetic routes and potential applications of functional carbon dots in the field of enantioselective sensing.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
Shirbhate ME, Kwon S, Song A, Kim S, Kim D, Huang H, Kim Y, Lee H, Kim SJ, Baik MH, Yoon J, Kim KM. Optical and Fluorescent Dual Sensing of Aminoalcohols by in Situ Generation of BODIPY-like Chromophore. J Am Chem Soc 2020; 142:4975-4979. [DOI: 10.1021/jacs.9b13232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mukesh Eknath Shirbhate
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Ayoung Song
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Seungha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dayeh Kim
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Haofei Huang
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Youngmee Kim
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Hanna Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sung-Jin Kim
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Juyoung Yoon
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| | - Kwan Mook Kim
- Department of Chemistry & Nanosciences (BK21 Plus), Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Hassan DS, Thanzeel FY, Wolf C. Stereochemical analysis of chiral amines, diamines, and amino alcohols: Practical chiroptical sensing based on dynamic covalent chemistry. Chirality 2020; 32:457-463. [PMID: 32027416 DOI: 10.1002/chir.23185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Practical chiroptical sensing with a small group of commercially available aromatic aldehydes is demonstrated. Schiff base formation between the electron-deficient 2,4-dinitrobenzaldehyde probe and either primary amines, diamines, or amino alcohols proceeds smoothly in chloroform at room temperature and is completed in the presence of molecular sieves within 2.5 hours. The substrate binding coincides with a distinct circular dichroism signal induction at approximately 330 nm, which can be correlated to the absolute configuration and enantiomeric composition of the analyte. The usefulness of this sensing method is highlighted with the successful sensing of 18 aliphatic and aromatic amines and amino alcohols and five examples showing quantitative %ee determination with good accuracy.
Collapse
Affiliation(s)
- Diandra S Hassan
- Department of Chemistry, Georgetown University, Washington, D.C., USA
| | - F Yushra Thanzeel
- Department of Chemistry, Georgetown University, Washington, D.C., USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, D.C., USA
| |
Collapse
|
12
|
Zhang YJ, Wu G, Xu H, Wang X, Long LS, Kong XJ, Zheng LS. Magnetooptical Properties of Chiral [Co2Ln] Clusters. Inorg Chem 2019; 59:193-197. [DOI: 10.1021/acs.inorgchem.9b03115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu-Jia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Wu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Yang Y, Liang J, Pan F, Wang Z, Zhang J, Amin K, Fang J, Zou W, Chen Y, Shi X, Wei Z. Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nat Commun 2018; 9:3808. [PMID: 30228273 PMCID: PMC6143534 DOI: 10.1038/s41467-018-06239-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Transfer of molecular chirality to supramolecular chirality at nanoscale and microscale by chemical self-assembly has been studied intensively for years. However, how such molecular chirality further transfers to the macroscale along the same path remains elusive. Here we reveal how the chirality from molecular level transfers to macroscopic level via self-assembly. We assemble a macrostripe using enantiomeric camphorsulfonic acid (CSA)-doped polyaniline with hierarchical order. The stripe can twist into a single-handed helical ribbon via helical self-motion. A multi-scale chemo-mechanical model is used to elucidate the mechanism underlying its chirality transfer and induction. The molecular origin of this macroscopic helical chirality is verified. Results provide a comprehensive understanding of hierarchical chirality transfer and helical motion in self-assembled materials and even their natural analogues. The stripe exhibits disparate actuation behaviour under stimuli of enantiomeric amines and integrating such chiral perception with helical self-motion may motivate chiral biomimetic studies of smart materials. Chirality transfer by chemical self-assembly has been studied intensively for years but chirality transfers along the same path remains elusive. Here the authors use a multiscale chemo-mechanical model to elucidate the mechanism underlying the chirality transfer via self-assembly in hierarchical camphorsulfonic acid doped polyaniline.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Liang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Fei Pan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
| | - Zhen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Kamran Amin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Wenjun Zou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Zardi P, Wurst K, Licini G, Zonta C. Concentration-Independent Stereodynamic g-Probe for Chiroptical Enantiomeric Excess Determination. J Am Chem Soc 2017; 139:15616-15619. [PMID: 29039937 DOI: 10.1021/jacs.7b09469] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enantiomeric excess (ee) determination is crucial in many aspects of science, from synthesis to materials. Within this subject, coupling molecular sensors with chiroptical techniques is a straightforward approach to the stereochemical analysis of chiral molecules, especially in terms of process immediacy and labor. Stereodynamic probes typically consist of racemic mixtures of rapidly interconverting enantiomeric conformers able to recognize a chiral analyte and greatly amplify its chiroptical readout. A great number of sensors have been developed, but their activity is generally restricted to one or a few classes of chemicals, and the analysis outcome relies on precise knowledge of the probe and analyte concentrations. This aspect in particular limits the potential practical applications. Here we report an oxo-vanadium(V) aminotriphenolate complex that was found to act as a concentration-independent stereodynamic sensor for a wide range of compounds. The bare complex is CD-silent, but coordination of an enantioenriched substrate immediately gives rise to intense Cotton effects in the visible region. Furthermore, a geometry change during the substrate-complex interaction leads to a marked optical response, as witnessed by a strong red-shift of the probe absorption bands, thus allowing the generation of dichroic signals in an "interference-free" area of the spectrum. This peculiarity allows for a linear correlation at high wavelengths between the ee of the analyte and anisotropy g-factor. This parameter derives from the differential circularly polarized light absorption of the sample but is independent of concentration. The newly developed sensor based on a simple coordination process has an unprecedented general character in terms of substrate scope and employment.
Collapse
Affiliation(s)
- Paolo Zardi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck , Innrain 80/82, A-6020 Innsbruck, Austria
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| |
Collapse
|
15
|
De los Santos ZA, Legaux NM, Wolf C. Chirality sensing with stereodynamic copper(I) complexes. Chirality 2017; 29:663-669. [DOI: 10.1002/chir.22765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Christian Wolf
- Department of Chemistry Georgetown University Washington D.C. USA
| |
Collapse
|